A quick intro to deep learning and Py lorch

A multiclass classification problem

Three species of Iris:

iris setosa iris versicolor iris virginica

petal sepal

A multiclass classification problem

Our goal is to predict the type of Iris based on four measurements:

e petal length
e petal width
e sepal length

e sepal width

These four numbers are called “features”, and combined they form a “feature vector” such as

Fach Iris is described by its own feature vector

Note: A “vector” is just a finite, ordered list of numbers

5.1
3.0
1.4
0.2

A vector such as

whose components are nonnegative and sum to 1 is called a “probability vector”

Application:
Suppose we're solving a classification problem with 3 possible classes
The probability vector p tells us how likely it is that the example we’re looking at belongs to each class

50 the vector p above tells us: e The probability of belonging to class 1 is 30%
e The probability of belonging to class 2 is 10%

e The probability of belonging to class 3 is 60%

11 [0 0
The special probability vectors |0] , [1|, and |0]| reflect certainty about which class an example belongs to
0] [0 1
-
S0, the vector |0| expresses certainty that the example we’re looking at belongs to class 1
O
o
Likewise, the vector |[1| expresses certainty that the example belongs to class 2
O
o

And the vector [0| expresses certainty that the example belongs to class 3

The function S : R® — R* defined by - et1 -

e2
evl _|__|_€uK

- - (7
(VA e K
_eYl 4. e K _
U2
UK

1s called the “softmax” function

The output of S is guaranteed to be a probability vector!

The softmax function is useful in machine learning because 1t converts a vector into a probability vector

Ingredient 1: A training dataset

Our training dataset consists of

a collection of feature vectors $17 x27 Ce e T N - d
'5'.1‘ I 7] '5-.9'
3.5 3.2 3
1.4 4.7 5.1
0.2] |14 1.8
K

and corresponding target values Y1,Y2, ..., YN -

:»—\oo:

Here y; is a probability vector that expresses certainty about which class example ¢ belongs to

The position of the 1 tells

For example, if K = 3 and example ¢ belongs to class 1, then y; = [0 you which class the
0 example belongs to

Ingredient 2: A prediction function f :R% — R®

The output of f should be a probability vector, and we hope that

r,)~y; fori=1,...,N
f(v) yz % % This looks complicated, but
you could try to invent a

more concise notation

Big question: What form should we assume for f7

I ﬂ1,o 51,1%‘,1 Tt T ﬁl,dmz‘,d]
ﬂz,o ﬂz,lxu Tt T ﬁz,dmz‘,d

For example, we might assume that f has the form f(z;) =S

- Bk, +PBri1xi1 + -+ PK,dTid

In words, this function f computes a bunch of weighted combinations of the components of z;,

then the softmax function S is applied to ensure that the output is a probability vector

Much of machine learning is just getting creative about what form we assume for f

Ingredient 3: A loss function /¢

We need a way to measure how well a predicted probability vector ¢

agrees with a “ground truth” probability vector p

2

First idea: 4(p,q) = (p1 —q1)° + (p2 — @2)* + - + (PK — qK)

f ﬁ This choice of f is

called the “squared

P1 d1 error” loss function
P2 q2
PK_ dK

If ¢ agrees perfectly with p, then £(p,q) = 0

On the other hand, if ¢ is not close to p, then £(p, q) is large

The most beautiful way to measure how well a predicted probability vector ¢
agrees with a “ground truth” probability vector p

is to use the “cross-entropy” loss function ¢ defined by

{(p,q) = —p1log(q1) — p2log(q2) — - - - — pr log(gx)
f ﬁ This strange-looking formula is hard
‘pl 7] - 0] to motivate, but it turns out that in
some sense it’s the most natural
P2 92 way to compare probability vectors
PK | 4K |
1

Exercise: Suppose that p = |0|. Which probability vector ¢ minimizes £(p, q)?

The most beautiful way to measure how well a predicted probability vector ¢

agrees with a “ground truth” probability vector p

is to use the “cross-entropy” loss function ¢ defined by

) = —p1log(q1) — p2log(q2) — -+ - — pr log(qx)

{(p,
1
P1 d1
P2 q2
]9.K 4K |

Exercise: Suppose that p =

This strange-looking formula is hard
to motivate, but it turns out that in
some sense it’'s the most natural
way to compare probability vectors

. Which probability vector ¢ minimizes £(p, q)?

Conclusion: £(p, q) is small when ¢ agrees with p!

The cross-entropy formula looks weird — how would you discover it?

One approach uses the “maximum likelihood estimation” technique from statistics

We make a modeling assumption that the probability vector

| ﬂ1,o T ﬂ1,1337;,1 Tt T 51,d£137:,d
/82,0 T ﬂ2,1337;,1 Tt T 52,d£137:,d

flei) =8

Br,o0+PBri1xi1 + -+ PBK,dTid

tells us how likely it is that example 7 belongs to each of the K classes

Then we go through the steps of maximum likelihood estimation to estimate the beta coefficients

and when you work out the details, the cross-entropy formula emerges

We hope that f(yi, f(:EZ)) issmallfor ¢ =1,... N

In other words, we hope that the average cross-entropy

N
1 .
LB) =+ > Uy f(z:) is small
5.10 = e could call khis fﬁ

These p&rame&ms 5'1)
are “lknobs” thak
you can Fune 51;0

Brca.

We select (3 by solving the optimization problem: minimize L(ﬁ)

o

Neural networks

inputs g }:_:

input layer hidden layer output layer

(Getting creative with the prediction function)

A simple nonlinear function

0 otherwise

Also called RelU

RelLU is a popular choice of “activation function” in neural networks

A diagram of a neural network

N @\

\ 9 ,‘\"V“/" ; | | >
\‘o"/@fw"?”/ N
S @ @S) —
O % A X

AR i e >

N
W VOS5
S \wf'é“’%‘ﬁ\& //{"‘&{

© Input Layer () Hidden Layer @) Output Layer
- Each node computes a weighted combination of its inputs

» For iIntermediate layers, if the result is negative, the output of the node is set to O

The weights in each weighted combination are “knobs” that can be tuned

Optimization algorithms

-~
\\

T,
NOeY% 0""' " ""

“‘3"”’02 :" " " l v/
sk

N
S

RS

A ¢
s 2 k3 ~
o (o @ . f

Visualizing an n-tuple

Ordered n-tuple: an ordered list of n numbers

Visualizing 9

| 4l
| 3l

(3,2)
> : ot

Point picture Vector picture

. -~ . . 1 |} |} ¢ -~ - - . . 1 ¢
. . ~ .) 1 r ’ - — o . . 1 i ’ . . ’
|
L ISthe | B ~ - - L
1 - .~ ~ ~ ' B " — N N g s s e e

,,,,,

temperature at os| - -]
the point [’| 78 B
0.5 [N 3
[" . A
1.5]
iy, .
-2 1.5 1 0.5 I 0.5 1 1.5 2

V L(3) points in the direction of steepest ascent

Problem: minimize L(3)

Gradient descent: repeatedly move in direction of steepest descent

Initialize 5" € R4

Thendo Bt =p8'—aVL(BY) for t=0,1,2,...

“Learning rate”

PyTorch computes the gradient for us

Handwritten digit classification
using PyTorch

Ol2|¢

Using PyTorch for deep learning

In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

import torch

Load MNIST handwritten digit data in .csv format.

In [2]: # The MNIST dataset in .csv format can be found on Kaggle here:
https://www.kaggle.com/oddrationale/mnist-in-csv

data dir = '/Users/dvo/MNIST/'
df train = pd.read csv(data dir + 'mnist train.csv')
df val = pd.read csv(data dir + 'mnist test.csv')

Each 28 x 28 MNIST image
IS stored as a row In a data frame

Using PyTorch for deep learning

Define a dataset class:

In [3]: class DigitsDataset(torch.utils.data.Dataset):

ey def init (self, df):

We must
implement
B def len (self):

& hé <4 E l’ﬁ"ﬁ@. T return len(self.df)
webhods

self.df = df

‘__wﬂ#%} def getitem (self, idx):

row = self.df.iloc[idx]

X = np.float32(row[l:].values)/255
y = row[0]

return X, y

Using PyTorch for deep learning

Create training and validation datasets and dataloaders.

In [4]: dataset train = DigitsDataset(df train)

TKES Ob\j@:@& Can 9@.& dataset val = DigitsDataset(df val)
from the dataset

dataloader train = torch.utils.data.Dataloader(dataset train, batch size=64,shuffle=True)
dataloader val = torch.utils.data.Dataloader (dataset val, batch size=64,shuffle=True)

Look at a training example and its label. 9]

In [25]: X batch, Y batch = next(iter(dataloader train))
plt.imshow(np.reshape(X batch[0],(28,28)))
print (Y batch([0])

tensor(8)
This command qets
one baktch of data

0

5

10

15

20

25

Using PyTorch for deep learning

Define a model class that specifies our neural network architecture.

In [6]: class SimpleNeuralNetwork(torch.nn.Module):

def 1init (self):

super ().__init_ () Specify the

self.densel = torch.nn.Linear (784, 100) G ¢

self.dense2 = torch.nn.Linear(100,10) | L&jﬁ‘rs LA OWY

self.ReLU = torch.nn.ReLU() neural networle
This MQ&kc}d # self.Softmax = torch.nn.Softmax(dim = 1)

e?* def forward(self, x):

&F’F’Uﬁ.s the _
MQ%T’&L MQ&MOTW self.densel (x)
to a veckor x se L herv)

self.dense2(x)
= self.Softmax(x) # SoftMax 1s combined with the loss function, so not needed here.

o NN
- LI | B |

return x

Using PyTorch for deep learning

Create a model (our neural network).

In [7]: model = SlmpleNeuralNetwork() -~ This L5 our V\QMT&{. MQ&MO\“M

device = torch.device('cpu') # Change this line if a GPU 1s availlable
model = model.to(device) # This line would put the model on the GPU, if device 1is a GPU.

Choose the loss function and the optimization algorithm.

In [8]: loss fun = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)

Adam is a variant
of stochastic
gradient descent

= = In [10]: num_epochs = 10 #gpmommremmssnen
I ra I n I n th e N train = len(dataset train)
N val = len(dataset val)

train losses = [] # collect the training losses

heural network -e=-o

for ep in range(num epochs):

We'll do 10 epochs of SGD

model.train() # Put model in train mode. This turns on any model behavior that should only occur during training.
train loss = 0.0

batoh_idx = ¢ Sweep through training data,
for X batch, Y batch in dataloader train: «feewnmmmsenm OMQ bQEﬁh QE a &EMQ

X batch = X batch.to(device) # If device is a GPU, this puts the current batch of data on the GPU.
Y batch = Y batch.to(device)

N batch = X batch.shape[0]
outputs = model (X batch)
loss oneBatch = loss fun(outputs,Y batch)

This line does one model.zero_grad() PyTorch tampuﬁes the
. . . oss_oneBatch.backward()

optimizer.step()
gradient descent

train loss += loss oneBatch*N batch

model.eval() # Put model in eval mode. This turns off any model behavior that should only occur during training.
val loss = 0.0
for X batch, Y batch in dataloader val:

X batch = X batch.to(device)
Y batch = Y batch.to(device)

with torch.no grad(): # Tell PyTorch it doesn't need to keep track of gradient info.

N batch = X batch.shape[0]
outputs = model (X batch)
loss oneBatch = loss fun(outputs,Y batch)

Qé?(}r& PQ"‘{OT’MO\M&Q_ (@1 \ val loss += loss _oneBatch*N batch
both training and g Ermiopt o e
validabkion datasets

“‘.‘ prlnt('epOCh: , ep, 'train loss:

, train loss/N train, 'validation loss: ', val loss/N _val)

Using PyTorch for deep learning

Plot the objective function value vs. epoch for both the training and validation datasets.

In [12]: plt.plot(train losses, label = 'training loss')
plt.plot(val losses, label = 'validation loss')
plt.legend(loc = 'upper right')
plt.title('Objective function value versus epoch')

Out[l2]: Text(0.5, 1.0, 'Objective function value versus epoch')

Objective function value versus epoch

0.35 1 —_training loss
validation loss
0.30 -
0.25 - . p .
1f the validation Loss
0.20 -
Starts increasing,
0.15 -

we are overfitting the

0.10 - ‘ o |
\ Eraining data
0.05 - ’

Using PyTorch for deep learning

Compute our prediction accuracy on the validation dataset.

In [19]: num correct = 0
model.eval ()

for X batch, Y batch in dataloader val:

X batch
Y batch

X batch.to(device)
Y batch.to(device)

with torch.no grad(): # Tell PyTorch it doesn't need to keep track of gradient info.

outputs = model (X batch)

num correct += sum(np.argmax(outputs, axis = 1) == Y batch)
print('Accuracy: ', num correct/N val) Counk how mamv F?Qdi&&@ﬁi i&bats
Accuracy: tensor(0.9762) agree with the qround truth labels

