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1 Introduction

The fundamental strategy of calculus is to take a nonlinear function f
(difficult) and approximate it locally by a linear function (easy):

Technically, the function on the right
in (1) is called an “affine" function.f (y) ≈ f (x) + f ′(x)(y− x) when y is close to x. (1)

For a function f : Rn → R, this approximation can be written as

f (y) ≈ f (x) + 〈∇ f (x), y− x〉.

Once we internalize this approximation, which is sometimes called
Newton’s approximation, we realize something delightful: everything
in calculus can be derived easily. Calculus is easy. Shouldn’t this also
be true of calculus on manifolds, which is often viewed as a formidable
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subject? Shouldn’t it be easy to derive even the generalized Stokes’s
theorem? After all, it’s still just calculus.

A manifold is the natural setting in which to do calculus. Developing
our theory at the appropriate level of generality should make things
more beautiful and more elegant, not more difficult.

There is something strange about the way that calculus on manifolds
is taught. Calculus is first taught non-rigorously, and rightly so, because
a fact such as the mean value theorem is very believable and there is no
benefit in getting bogged down, initially, in its rigorous proof. You can
discover and understand calculus perfectly clearly, like the old masters
did, without the rigorous proofs. But for some reason, calculus on
manifolds is usually taught in full rigor right from the start. In that
approach, the intuition is lost. There are in fact several books which at-

tempt to explain calculus on manifolds
intuitively, such as

• Visual Differential Geometry and
Forms by Needham (available June
2021)

• Vector Calculus, Linear Algebra, and
Differential Forms: A Unified Ap-
proach by Hubbard and Hubbard

• Multivariable Mathematics: Linear Al-
gebra, Multivariable Calculus, and
Manifolds by Shifrin

• Second Year Calculus: From Celes-
tial Mechanics to Special Relativity by
Bressoud

• Discrete Differential Geometry: An
Applied Introduction by Keenan
Crane (see also his YouTube videos)

Many calculus on manifolds textbooks drop a lot of abstract-sounding
definitions on the poor student without explaining the intuitive idea
behind what’s going on. Tensors and differential forms are pulled out
of thin air, and you might have no idea how they emerge naturally
and unavoidably when you chop up a manifold into tiny pieces and
compute the contribution of each piece to an integral. The generalized
Stokes’s theorem is also pulled out of thin air, without mentioning
that it can be discovered using the same simple type of argument that
physicists use to derive Green’s theorem and the divergence theorem.
(See figure 1.) The exterior derivative is pulled out of thin air, without
showing how it emerges when deriving Stokes’s theorem. The goal of
these notes is to explain calculus on manifolds in such a way that you
can imagine how someone might have thought of it. In other words,
the goal is to reveal how calculus on manifolds, like basic calculus, is
almost obvious.

I will freely use vector calculus and linear algebra, though. If you
already love linear algebra, like I do, then there is little standing in the
way to a clear intuitive understanding of calculus on manifolds.

Figure 1: These diagrams taken from the
Feynman Lectures on Physics show how
physicists derive the classical Stokes’s
theorem and divergence theorem using
highly intuitive arguments. We can do
the same for the generalized Stokes’s
theorem.

Disclaimer: I’m not an expert on smooth manifolds. Rather, these
notes represent the intuition that I only uncovered with much difficulty,

https://www.feynmanlectures.caltech.edu/
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after reading parts of several books on the topic and pondering the
ideas for a long time. I’m sure these ideas are obvious to everyone who
understands this material deeply — in fact, so obvious that they are
not even worth mentioning, apparently.

2 What is a manifold? In these notes the term “manifold" will
always mean “smooth manifold."

A manifold is a generalization of the idea of a curve or of a surface. A
smooth curve can be approximated locally by a straight line. A surface
can be approximated locally by a plane. A smooth k-manifold in Rn An “affine subspace" of Rn is what you

get if you take a subspace of Rn and shift
it away from the origin. Note that an
affine subspace of Rn is not actually a
subspace of Rn. For that reason, some
might prefer the term “affine manifold."

can be approximated locally by a k-dimensional affine subspace of Rn.
A smooth manifold is a natural setting in which to do calculus, for

the following reason. The key idea of calculus is to approximate a
nonlinear function locally by an affine function. But the domain of an
affine function must be an affine space. So how can we approximate a In order for the approximation f (y) ≈

f (x) + f ′(x)(y − x) to make sense, we
need y− x to be a vector, the appropriate
type of object to be plugged into a linear
transformation or multiplied by a matrix.
The distinctive feature of an affine space
is that the difference of any two points is
a vector.

function f by an affine function if the domain of f is not even an affine
space? We must at least be able to locally approximate the domain of f
by an affine space.

Suppose that a manifold M is approximated near a point x ∈ M by
an affine subspace W. Vectors in Rn of the form w− x, where w ∈W,
are called “tangent vectors" to M at x. The set of all tangent vectors to
M at x is called the tangent space of M at x, and is denoted Tx(M).

Note that the way I have defined the tangent space of M at x, it is
a subspace of Rn. I don’t visualize it as passing through the origin,
though. I visualize it as being attached to M at x. When I visualize a
vector v that is tangent to M at x, the arrow that I picture has its tail at
x. (See figure 2.)

Figure 2: A tangent vector to a manifold

2.1 Manifolds with boundary

Some manifolds have a boundary. For example, the boundary of a ball
in R3 is a sphere. A sphere in R3 has no boundary, but a hemisphere
has a boundary which is a circle. (See figure 3.)

Figure 3: The boundary of a hemisphere
is a circle.

The above examples suggest that if a smooth k-manifold M has a
boundary, then the boundary of M is a smooth manifold of dimension
k − 1. We denote the boundary of M by ∂M. At each point on ∂M,

https://en.wikipedia.org/wiki/Affine_space
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there is a unique outward unit normal vector. This is illustrated in
figure 5. We might also conjecture that ∂M has no boundary.

Figure 4: A point on the boundary of a
manifold called X.

Figure 5: Outward and inward-pointing
normal vectors at various points on the
boundary of a 2-manifold (left) and a 3-
manifold (a ball, right).

Figure 6: If p ∈ ∂M, then Tp(∂M) is
a subspace of Tp(M). In this example,
Tp(M) is two-dimensional and Tp(∂M)
is one-dimensional.

Notice that if x ∈ ∂M, then Tx(∂M) is a subspace of Tx(M). (See
figure 6.) The dimension of Tx(∂M) is k− 1, whereas the dimension
of Tx(M) is k. When Tx(∂M) is viewed as a subspace of Tx(M), the
orthogonal complement of Tx(∂M) has dimension 1. This explains why,
at each point in ∂M, there is a unique outward unit normal vector. (See
figure 5.)

3 Integration on manifolds

The way that integration works is that you chop the region that you’re
integrating over into tiny pieces, compute the contribution of each piece,
then add up all those individual contributions. When we chop up a
manifold M, we are going to chop it up into tiny pieces such that each
piece is approximately a parallelepiped, spanned by vectors which are
tangent to M. (See figure 7.) Figure 7: A manifold is chopped up into

tiny parallelepipeds, each one of which
is spanned by tangent vectors.
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3.1 What type of object should we integrate over a manifold?

In vector calculus, we integrate vector fields over surfaces. At least, that
is how we are taught to think of it. What kind of mathematical object
is the natural thing to integrate over a manifold? Should it be a vector
field or something else? (Answer: it should be something else.)

Let’s think about how integration is going to work. Following the
usual pattern for integration, we chop up our manifold into tiny pieces,
in such a way that the ith piece is approximately a parallelepiped
spanned by tangent vectors vi

1, . . . , vi
k. The contribution of the ith piece

can be viewed as being a function of these k vectors. Thus, to compute
the contribution of each piece of the manifold, what we need is a gadget
ω that will assign to each point p on our manifold a function ω(p) that
takes as input a list of tangent vectors v1, . . . , vk and returns as output
a real number (the contribution of the piece of the manifold that is
spanned by these tangent vectors). The integral of ω over M is defined
by ∫

M
ω ≈∑

i
ω(pi)(vi

1, vi
2, . . . , vi

k). (2)

Each pi is a point chosen arbitrarily in the ith parallelepiped. A precise
definition would state that

∫
M ω is in some sense a limit of “Riemann

sums" like this.
You can argue that ω(p) should be alternating and multilinear, For ω(p) to be alternating means that in-

terchanging any two of its inputs should
reverse the sign of the output. For ω(p)
to be multilinear means that it is linear
in each of its inputs.

because chopping up the manifold more finely should not change the
value of the integral (and because degenerate parallelepipeds should
contribute 0).

Why should ω(p) be multilinear?
Imagine that we chop the ith piece of M in half, so that each of

the two new pieces is spanned by the tangent vectors vi
1/2, vi

2, . . . , vi
k.

The sum on the right in equation (2) should not change, right? At
least, it should only change by a negligible amount. After all, the
integral is supposed to be the limit of sums like this, so the sums are
supposed to converge to the limiting value. Once we have chopped up
M into sufficiently small pieces, we are not supposed to be able to keep
changing the value of the sum by chopping ever more finely.

In order for the value of the sum to be unchanged by this extra chop,
we require that

ω(pi)

(
vi

1
2

, vi
2, . . . , vi

k

)
=

1
2

ω(pi)(vi
1, . . . , vi

k).

In other words, when a piece is cut in half, its contribution to the
integral is cut in half. The contribution of the original piece is the sum
of the contributions from the two new pieces.
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Similar reasoning suggests that ω(pi) should have the property that It may seem to be a leap from (3) to the
assumption that ω(pi) must be multilin-
ear. I will offer two additional pieces of
evidence that requiring ω(p) to be mul-
tilinear for all p is the correct choice to
make. First of all, if you parametrize the
same manifold in two different ways, and
use each parametrization to compute the
integral, you should get the same answer.
It can be shown that when each ω(p)
is multilinear (and alternating), we do
indeed get the same answer both ways.
Secondly, the classical integrals of vector
calculus can be expressed as special cases
of the integral over a manifold defined in
equation (2), with ω(p) alternating and
multilinear. This is shown in sections 4.2
and 4.3.

ω(pi)(vi
1, . . . , cvi

j, . . . , vi
k) = cω(pi)(vi

1, . . . , vi
j, . . . , vi

k) (3)

for all c > 0 and j = 1, . . . , k. And this in turn suggests that ω(pi)

should be a multilinear function.

Why should ω(p) be alternating? If any two of the vectors in
the list vi

1, . . . , vi
k are equal to each other, then the ith parallelopiped is

degenerate and its contribution to the integral should be 0. In other
words, ω(pi)(vi

1, . . . , vi
k) = 0. Because we are assuming that ω(pi) is

multilinear, this implies that ω(pi) must be alternating.
Here is an explanation of this fact in the case where k = 2. I’m

assuming that ω(p) is multilinear and that if both inputs to ω(p) are
equal then the output is 0. Notice that

0 = ω(p)(v1 + v2, v1 + v2)

= ω(p)(v1, v1)︸ ︷︷ ︸
0

+ω(p)(v1, v2) + ω(p)(v2, v1) + ω(p)(v2, v2)︸ ︷︷ ︸
0

= ω(p)(v1, v2) + ω(p)(v2, v1).

We conclude that

ω(p)(v2, v1) = −ω(p)(v1, v2)

which means that ω(p) is alternating.

Let’s make a few definitions, motivated by the above observations.
A multilinear function T : Rn × · · · ×Rn︸ ︷︷ ︸

k times

→ R is called a k-tensor on Rn.

More generally, if V is a subspace of Rn (such as the tangent space to a
manifold at a point p), then a multilinear function T : V × · · · ×V︸ ︷︷ ︸

k times

→ R

is called a k-tensor on V. If T is also alternating (so that interchanging
any two inputs to T reverses the sign of the output), then T is called
an alternating k-tensor. A function ω that assigns to each point p ∈ M
an alternating k-tensor ω(p) on the tangent space to M at p is called a
differential k-form on M. A differential k-form can also be called a

k-form or a differential form.A differential form is the natural type of object to integrate over
a manifold. It exists in order to compute the contribution of each
piece of a chopped up manifold M. Each tiny piece is a parallelepiped
spanned by tangent vectors. A differential form ω looks at each tiny
parallelepiped (or equivalently, it looks at the tangent vectors that span
the parallelepiped) and it tells us the contribution of each tiny paral-
lelepiped to the total integral. Add up all those individual contributions
to obtain the value of the integral

∫
M ω.



the intuition behind calculus on manifolds 7

3.2 Orientation

There is one important issue that I have not yet addressed when explain-
ing how to integrate a differential form ω over a manifold M. Suppose
we chop up M into tiny pieces and the ith piece is approximately a
parallelepiped P based at a point p ∈ M and spanned by tangent vec-
tors v1, . . . , vk. To compute the contribution of the ith piece, we plug
these tangent vectors into the k-tensor ω(p). But here is the crucial
question: when we plug these tangent vectors into ω(p), how should
they be ordered? I could have equally well said that the parallelepiped
P is spanned by any permutation of the tangent vectors v1, . . . , vk. No
permutation of these tangent vectors is any more or less valid than any
other.

Since ω(p) is alternating, permuting the inputs to ω(p) either
changes the sign of the output (if the permutation is odd) or else
does not change the output at all (if the permutation is even). Somehow
we must specify a consistent way of ordering the tangent vectors for
each tiny piece of our chopped up manifold.

The most direct way to do this is to provide a continuous differ- What does it mean for a differential form
ω on M to be “continuous" or to vary
continuously over M? I can imagine a
vector field varying continuously over M,
but what would it mean for a tensor field
to vary continuously over M?

Here is one way to think about it. If
the functions v1 : M → Rn, . . . , vk :
M → Rn are continuous tangent vec-
tor fields on M, then the function p 7→
ω(p)(v1(p), . . . , vk(p)) should vary con-
tinuously as the point p ranges over M.

Similarly, to say that a differential
form ω on M is “smooth" means that
if the tangent vector fields v1, . . . , vk on
M are smooth then the function p 7→
ω(p)(v1(p), . . . , vk(p)) varies smoothly
as p ranges over M.

ential k-form µ on M which is “non-vanishing" in the sense that if
tangent vectors v1, . . . , vk at a point p ∈ M are linearly independent
then µ(p)(v1, . . . , vk) 6= 0. Then, when computing the contribution of
the ith piece of our chopped up manifold M, we order the tangent
vectors v1, . . . , vk so that the output of µ(p) is positive. (We need µ to
be non-vanishing because otherwise it might not be possible to order
the tangent vectors v1, . . . , vk so that the output of µ(p) is positive.)
Such a differential form µ is called an “orientation form" for M. An
“oriented" manifold is a manifold M for which an orientation form has
been specified.

For example, suppose that M is a sphere in R3. To orient M, we
could let µ be the differential form on M defined by µ(p)(v1, v2) =

(v1 × v2) · np, where np is the outward unit normal vector at p. Notice
that µ(p)(v1, v2) is positive if v1 × v2 points outward and is negative if
v1 × v2 points inward.

A Mobius strip provides an amazing demonstration that some man-
ifolds can’t be oriented. Suppose M is a Mobius strip and µ is an
orientation form for M. Let v1 and v2 be tangent vectors to M at a
point p ∈ M, ordered so that µ(p)(v1, v2) > 0. Now imagine sliding
or “continuously morphing" v1 and v2 along M, without ever passing
through a degenerate (linearly dependent) configuration, so that the
output of µ at each location along the way remains positive. Eventually
you arrive back at p, and you discover that µ(p)(v2, v1) > 0, which is a
contradiction. (See figure 8.)

Figure 8: A Mobius strip cannot be ori-
ented. This figure is from Calculus on
Manifolds by Spivak.
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3.3 An induced orientation for the boundary of M

Suppose µ is an orientation form for a k-manifold with boundary
M. The boundary of M is a (k− 1)-manifold, and we can define an
orientation form ∂µ on ∂M as follows: if p ∈ ∂M, and v1, . . . , vk−1 ∈
Tp(∂M), then

∂µ(p)(v1, . . . , vk−1) = µ(p)(np, v1, . . . , vk−1),

where np is the outward unit vector normal to ∂M at p. The slogan of
∂µ is “outward-pointing vector comes first."

3.4 Integrating a constant k-form over a parallelepiped

Suppose that M ⊂ Rn is a parallelepiped based at a point p ∈ Rn and
spanned by vectors v1, . . . , vk ∈ Rn. This set M is a k-manifold. At each point x ∈ M, the affine subspace

x + span{v1, . . . , vk} provides a perfect
local approximation of M.

Let ω be a differential form on Rn which is constant on M (so that
ω(p) = ω(q) for all points p, q ∈ M). Then∫

M
ω = ω(p)(v1, . . . , vk).

This fact might seem intuitive. It is analogous to integrating a constant Is it clear that M is orientable? At each
point x ∈ M, the tangent space to M
at x is V = span{v1, . . . , vk}. Let µ
be the k-form on Rn defined so that
µ(x)(w1, . . . , wk) is equal to 0 if the vec-
tors w1, . . . , wk are linearly dependent,
and otherwise is equal to the determinant
of the change of basis matrix from the or-
dered basis (w1, . . . , wk) to the ordered
basis (v1, . . . , vk). This µ is an orientation
form for M.

If we define two ordered bases of V
to have the “same orientation" when the
determinant of the change of basis matrix
from one to the other is positive, then
we can say that this k-form µ returns a
positive value if and only if (w1, . . . , wk)
has the same orientation as (v1, . . . , vk).

function in multivariable calculus. When you chop up M into tiny
identical pieces, each tiny piece contributes the same amount. However,
I’ll attempt a more detailed explanation.

Let N be a large positive integer. Chop up M into tiny paral-
lelepipeds, each of which is spanned by the vectors v1/N, . . . , vk/N.
The total number of pieces of M is Nk. The sum of all the contributions
to
∫

M ω is

∑
i

ω(p)(v1/N, . . . , vk/N) = ∑
i

1
Nk ω(p)(v1, . . . , vk)

= Nk
(

1
Nk ω(p)(v1, . . . , vk)

)
= ω(p)(v1, . . . , vk).

By a limiting argument, we conclude that
∫

M ω = ω(p)(v1, . . . , vk).

4 Examples of tensors and differential forms

4.1 The differential of a smooth function f : Rn → R

Suppose that f : Rn → R is a smooth function. We define the “differ-
ential of f ", denoted d f , to be the differential 1-form on Rn such that

d f (p)(v) = 〈∇ f (p), v〉 (4)
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for all p, v ∈ Rn.
You can think of d f as telling you approximately how much f

changes when the input to f changes from p to p + v. That’s because
Newton’s approximation

f (p + v) ≈ f (p) + 〈∇ f (p), v〉

can be written equivalently as

f (p + v) ≈ f (p) + d f (p)(v).

4.2 Forms appearing in surface integrals and line integrals

Let M be an orientable surface in R3 and let F be a smooth vector
field on R3. One side of M is declared to be the “inside" and the
other side is the “outside". In vector calculus, to compute

∫
M F · dA,

we chop up M into tiny pieces, each of which is approximately a
parallelogram. Suppose that the ith piece is based at a point p ∈ M
and spanned by tangent vectors v1 and v2. These tangent vectors are
ordered so that v1 × v2 points outward. The contribution of the ith
piece is (v1 × v2) · F(p). We now recognize that∫

M
F · dA =

∫
M

ω

where ω is the differential 2-form on R3 defined by

ω(p)(v1, v2) = (v1 × v2) · F(p).

So the surface integrals we do in vector calculus can be thought of as
integrating a particular differential form over a surface.

Similarly, if C is a curve in R3, then the line integral
∫

C F · dr is equal
to
∫

C ω, where ω is the 1-form on R3 defined by

ω(p)(v) = v · F(p).

4.3 Forms appearing in volume integrals

Now let M be an open subset of R3 and let F : R3 → R be a
smooth function. In vector calculus, to compute the volume integral∫

M F dV, we chop up M into tiny parallelepipeds. Suppose that the
ith parallelepiped is based at a point p ∈ M and spanned by vectors
v1, v2, and v3, which are ordered according to the right-hand rule (so
(v1 × v2) · v3 > 0). The volume of the ith piece is det

[
v1 v2 v3

]
and

the contribution of the ith piece is F(p)det
[
v1 v2 v3

]
. We recognize

that
∫

M F dV =
∫

M ω, where ω is the 3-form on R3 defined by

ω(p)(v1, v2, v3) = F(p)det
[
v1 v2 v3

]
.

So the volume integrals we do in vector calculus can also be interpreted
as integrating a differential form.
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4.4 The determinant

The determinant of an n× n matrix, viewed as a function of the columns
of the matrix, is a great example of an alternating n-tensor on Rn. Can
we somehow use the determinant to construct an alternating k-tensor
on Rn, where k < n? Yes, and it’s the simplest thing you would try to
do. To be concrete, I’ll show how it works when k = 3 and n = 5. Our
tensor is given as input three vectors

v1 =


v11

v12

v13

v14

v15

 , v2 =


v21

v22

v23

v24

v25

 , v3 =


v31

v32

v33

v34

v35

 .

We choose integers i1, i2, i3 with 1 ≤ i1 < i2 < i3 ≤ 5. To be concrete, I’ll
take i1 = 2, i2 = 4, and i3 = 5, and I’ll name our tensor ϕ245 to reflect
this choice. We will keep only components 2, 4, and 5 of each input
vector and then we will compute a determinant. So, the definition of
ϕ245 is

ϕ245(v1, v2, v3) = det

v12 v22 v32

v14 v24 v34

v15 v25 v35

 .

With this construction, we obtain one alternating k-tensor on Rn

for each list of integers i1, . . . , ik with 1 ≤ i1 < · · · < ik ≤ n. In other
words, we obtain one alternating k-tensor for each k-element subset of
{1, . . . , n}. Thus, the total number of alternating k-tensors on Rn that
we have obtained with this construction is (n

k).
Let e1, . . . , e5 be the standard basis vectors for R5. Notice that

ϕ245(ei1 , ei2 , ei3) =

±1 if {i1, i2, i3} = {2, 4, 5},
0 otherwise.

In particular, we have

ϕ245(e2, e4, e5) = 1.

More generally, if i1 < · · · < ik, then

ϕi1···ik (ei1 , . . . , eik ) = 1.

5 A basis for the vector space of alternating k-tensors on Rn

The set of all alternating k-tensors on Rn is a vector space, denoted
Λk(Rn). It turns out that the set B of all k-tensors ϕi1···ik with i1 <

· · · < ik is a basis of this vector space. Let’s try to understand why.
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First I’ll show that B spans Λk(Rn). Thanks to multilinearity, an
alternating k-tensor α on Rn is determined completely by the values
of α(ei1 , . . . , eik ) where i1 < · · · < ik. To be concrete, I’ll show this
explicitly in the case where k = 2 and n = 4. Notice that

α(c11e1 + c12e2 + c13e3 + c14e4, c21e1 + c22e2 + c23e3 + c24e4)

= c11α(e1, c21e1 + c22e2 + c23e3 + c24e4)

+ c12α(e2, c21e1 + c22e2 + c23e3 + c24e4)

+ c13α(e3, c21e1 + c22e2 + c23e3 + c24e4)

+ c14α(e4, c21e1 + c22e2 + c23e3 + c24e4)

= c11c21���
�XXXXα(e1, e1) + c11c22α(e1, e2) + c11c23α(e1, e3) + c11c24α(e1, e4)

+ c12c21α(e2, e1) + c12c22���
�XXXXα(e2, e2) + c12c23α(e2, e3) + c12c24α(e2, e4)

+ c13c21α(e3, e1) + c13c22α(e3, e2) + c13c23���
�XXXXα(e3, e3) + c13c24α(e3, e4)

+ c14c21α(e4, e1) + c14c22α(e4, e2) + c14c23α(e4, e3) + c14c24���
�XXXXα(e4, e4)

= (c11c22 − c12c21)α(e1, e2) + (c11c23 − c13c21)α(e1, e3)

+ (c11c24 − c14c21)α(e1, e4) + (c12c23 − c13c22)α(e2, e3)

+ (c12c24 − c14c22)α(e2, e4) + (c13c24 − c14c23)α(e3, e4).

This reveals that α is determined entirely by the values of α(ei1 , ei2)

with i1 < i2. Now, we can easily construct a linear combination of
the 2-tensors ϕi1i2 which agrees with α for these particular inputs, as
follows:

α = α(e1, e2)ϕ12 + α(e1, e3)ϕ13 + α(e1, e4)ϕ14 + α(e2, e4)ϕ24 + α(e3, e4)ϕ34.

Try plugging in (e1, e2) on both sides, for example. On the left we have
α(e1, e2). On the right, all terms but the first vanish, and we are left
with

α(e1, e2)ϕ12(e1, e2) = α(e1, e2).

More generally, we see that if α ∈ Λk(Rn) then

α = ∑
i1<···<ik

α(ei1 , . . . , eik )ϕi1···ik .

So, B spans Λk(Rn).

Next let’s check that B is linearly independent. Again to be
concrete I’ll take k = 2 and n = 4. Suppose that

c12 ϕ12 + c13 ϕ13 + c14 ϕ14 + c23 ϕ23 + c24 ϕ24 + c34 ϕ34 = 0.

Plugging in (e1, e2) on both sides, all terms but the first on the left
vanish, and we are left with

c12 ϕ12(e1, e2) = c12 = 0.
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Similarly, we see that all the coefficients ci1i2 are 0.
The same argument, but written in more generality, shows that if

∑
i1<···<ik

ci1···ik ϕi1···ik = 0

then all the coefficients ci1···ik are 0. This shows that B is linearly
independent. Thus, B is a basis for Λk(Rn).

If ω is a differential k-form on Rn , then for each p ∈ Rn the k-
tensor ω(p) can be written as a linear combination of the basis elements
ϕi1···ik :

ω(p) = ∑
i1<···<ik

ci1···ik ϕi1···ik . (5)

Define ωi1···ik : Rn → R so that ωi1···ik (p) is equal to the coefficient
ci1···ik appearing in (5). Then

ω = ∑
i1<···<ik

ωi1···ik ϕi1···ik . (6)

This way of representing ω will be helpful when we discover Stokes’s
theorem.

6 Discovering the generalized Stokes’s theorem

Let M ⊂ Rn be an oriented k-manifold with boundary. Let µ be an You might object that ω only needs to be
defined on M, whereas I’m assuming ω
is defined on all of Rn. I believe we do
not miss the key ideas when making this
assumption. There is a related issue in
vector calculus: when integrating a vec-
tor field over a curve or a surface, the
vector field only needs to be defined on
the curve or on the surface. However, in
applications the vector field is typically
an electric field or a force field or a fluid
velocity field which is defined through-
out all of R3.

orientation form that specifies the orientation for M, and let ω be a
smooth differential (k− 1)-form on Rn. Our goal in this section is to
find a formula for

∫
∂M ω.

6.1 A special case

In light of equation (6), let’s simplify the problem by assuming that

ω(p) = f (p)η (7)

for some smooth function f : Rn → R and some alternating (k− 1)-
tensor η on Rn. Once we deal with this special case, we will use
equation (6) to obtain a formula for the integral of a general smooth
differential form over ∂M.

Figure 9: Chopping up a manifold.

Chop up M into tiny pieces such that each piece is approximately a
parallelepiped. Let Mi be the ith piece of M. Notice that∫

∂M
ω = ∑

i

∫
∂Mi

ω,

because the sum on the right “telescopes" and wonderful cancellation
occurs. This is the same type of wonderful cancellation that occurs
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Figure 10: This figure from the Feynman
Lectures on Physics illustrates the won-
derful cancellation that occurs when de-
riving the classical Stokes’s theorem.

when physicists derive the divergence theorem or Green’s theorem.
(See figure 10.)

Now let’s compute
∫

∂Mi
ω, the integral of ω over the boundary of

the ith tiny parallelepiped. The parallelepiped Mi is based at a point
p ∈ M and spanned by tangent vectors v1, . . . , vk, which are ordered
positively, so that

µ(p)(v1, . . . , vk) > 0.

This parallelepiped has 2k faces, which we can think of as coming in
pairs that are on opposite sides of Mi. For example, the face which is
based at p and spanned by v2, . . . , vk is opposite from the face which
is based at p + v1 and spanned by v2, . . . , vk. Let’s call these faces
F1 and G1, respectively. Likewise, the face which is based at p and
spanned by v1, . . . , v̂j, . . . , vk is opposite from the face which is based The notation v̂j means that vj is excluded

from the list.at p + vj and spanned by v1, . . . , v̂j, . . . , vk. Let’s call these faces Fj and
Gj, respectively. So

∫
∂Mi

ω =
k

∑
j=1

∫
Fj

ω +
∫

Gj

ω.

To evaluate
∫

F1
ω, we’ll make the approximation that f is constant In section 3.4, we discussed integrating

a constant differential form over a paral-
lelepiped.

on F1. In other words, f is approximately equal to f (p) at all points in
F1. This yields ∫

F1

ω ≈ − f (p)η(v2, . . . , vk).

The reason for the minus sign is that the tangent vectors v2, . . . , vk at
the point p are not ordered correctly in the opinion of the induced
boundary orientiation. The vector −v1 is outward-pointing at p, and Remember, “outward-pointing vector

comes first" is the slogan of the induced
boundary orientation.

µ(p)(−v1, v2, . . . , vk) is negative.
To evaluate

∫
G1

ω, we make the approximation that f is approxi-
mately constant on G1. In other words, f is approximately equal to
f (p + v1) at all points in G1. This yields∫

G1

ω ≈ f (p + v1)η(v2, . . . , vk).
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There is no minus sign this time because the tangent vectors v2, . . . , vk

at the point p + v1 are ordered correctly (in the opinion of the induced
boundary orientation). The vector v1 is outward-pointing at p + v1, and
µ(p)(v1, v2, . . . , vk) is positive.

Thus,

It is no surprise that here at the crucial
moment, when we are deriving the gen-
eralized Stokes’s theorem, we find our-
selves using Newton’s approximation!
Local linear approximation is indeed the
key idea of calculus.

∫
F1

ω +
∫

G1

ω ≈ ( f (p + v1)− f (p))η(v2, . . . , vk)

≈ 〈∇ f (p), v1〉η(v2, . . . , vk).

Next let’s evaluate
∫

F2
ω. An argument similar to the one given

above yields ∫
F2

ω ≈ f (p)η(v1, v3, . . . , vk).

There is no minus sign because the tangent vectors v1, v3, . . . , vk at the
point p are ordered correctly in the opinion of the induced boundary ori-
entation. The vector−v2 is outward-pointing at p, and µ(p)(−v2, v1, v3, . . . , vk)

is positive. (It is equal to µ(p)(v1, v2, v3, . . . , vk).)
Likewise, the same reasoning also yields∫

G2

ω ≈ − f (p + v2)η(v1, v3, . . . , vk).

There is a minus sign because the tangent vectors v1, v3, . . . , vk at the
point p + v2 are not ordered correctly in the opinion of the induced
boundary orientation. The vector v2 is outward-pointing at p + v2, and
µ(p)(v2, v1, v3, . . . , vk) is negative.

So, we find that∫
F2

ω +
∫

G2

ω ≈ −( f (p + v2)− f (p))η(v1, v3, . . . , vk)

≈ −〈∇ f (p), v2〉η(v1, v3, . . . , vk).

We can now see the pattern:∫
Fj

ω +
∫

Gj

ω ≈ (−1)j+1〈∇ f (p), vj〉η(v1, . . . , v̂j, . . . , vk)

for j = 1, . . . , k. Thus,

∫
∂Mi

ω =
k

∑
j=1

∫
Fj

ω +
∫

Gj

ω

≈
k

∑
j=1

(−1)j+1〈∇ f (p), vj〉η(v1, . . . , v̂j, . . . , vk)

=
k

∑
j=1

(−1)j+1d f (p)(vj)η(v1, . . . , v̂j, . . . , vk) (8)

where d f is the differential of f , defined in equation (4).
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The expression (8) reveals an interesting way to combine a 1-tensor
ν with an alternating (k− 1)-tensor η to obtain an alternating k-tensor,
which we call the “wedge product" of ν and η, denoted ν ∧ η:

(ν ∧ η)(v1, . . . , vk) =
k

∑
j=1

(−1)j+1ν(vj)η(v1, . . . , v̂j, . . . , vk).

With this notation, we have∫
∂Mi

ω ≈ (d f (p) ∧ η)(v1, . . . , vk).

So we see that

In the expression (9), I’ve introduced su-
perscript i’s to emphasize that vi

1, . . . , vi
k

are the tangent vectors that span the ith
parallelepiped Mi .

∫
∂M

ω = ∑
i

∫
∂Mi

ω

≈∑
i
(d f (p) ∧ η)(vi

1, . . . , vi
k) (9)

≈
∫

M
d f ∧ η

where d f ∧ η is the differential k-form on Rn defined by

(d f ∧ η)(p) = d f (p) ∧ η.

The approximations above can be made as close as we like by chop-
ping up M into sufficiently tiny pieces. So, by a limiting argument, we
conclude that ∫

∂M
ω =

∫
M

d f ∧ η.

6.2 The general case

Now let’s assume that ω is any smooth differential (k− 1)-form on Rn.
We are dropping the assumption that ω has the special form given in
equation (7). From formula (6), we can express ω as

ω = ∑
i1<···<ik−1

ωi1···ik−1
ϕi1···ik−1

.

where each ωi1···ik−1
: Rn → R is a smooth function. It follows that∫

∂M
ω = ∑

i1<···<ik−1

∫
∂M

ωi1···ik−1
ϕi1···ik−1

≈ ∑
i1<···<ik−1

∫
M

dωi1···ik−1
∧ ϕi1···ik−1

=
∫

M
∑

i1<···<ik−1

dωi1···ik−1
∧ ϕi1···ik−1

Again by a limiting argument, we conclude that the above approximate
equality in fact holds with exact equality. If we define dω is called the “differential" or the “ex-

terior derivative" of ω.
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dω = ∑
i1<···<ik−1

dωi1···ik−1
∧ ϕi1···ik−1

then we obtain ∫
∂M

ω =
∫

M
dω.

This is the generalized Stokes’s theorem.
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