The calculus you need for linear and logistic regression

These notes attempt to explain the multivariable calculus that you need to understand in order to
implement logistic regression from scratch. We assume familiarity with matrix and vector notation. Our
goal is to provide intuition rather than rigor, but we do give some guidance about how to make these ideas
rigorous.

1 Defining the derivative in multivariable calculus
In single-variable calculus, the derivative of a function f : R — R is typically defined as follows:

) =t 1) = T)

T—a T —a

Visually, W is the slope of the “secant line” connecting the points [f(aa)} and [f(xx)} on the graph of

f- As z approaches a, the slope of the secant line approaches the slope of the tangent line to the graph of f
a

fio]

Often, however, we are interested in functions which take a list of numbers as input and return a list of

numbers as output. If f: R™ — R™, the above definition does not make sense, because we can’t divide by
a vector. Dividing by a vector is an undefined operation.

There is a slightly different way of thinking about the derivative, however, which has the advantage that

it still makes perfect sense when f : R™ — R™. In high school algebra, we learn that a line with slope m

at the point

which goes through the point BO] has equation
0

Yy =yo + m(x — xg).

This is called the “point-slope” form of the equation for a line. If f : R — R is differentiable at a, then the
tangent line to the graph of f at the point [f?a)} has slope m = f’(a). Thus, the equation for this tangent
line is

y = f(a) + f'(a)(z — 20).

When z is close to a, this tangent line provides a good approximation to the value of f:

f(@) = f(a) + f'(a)(z — a). (1)

The point a is our “home base”, and we are approximating the value of f at a nearby point x. This
approximation is sometimes called the “tangent line approximation” to f near a, or alternatively the “local
linear approximation” to f near a. It is called a “linear” approximation because the graph of the function on
the right in (1) is a straight line. It is a “local” approximation because the approximation is only good when
x is close to a. Another name which I use frequently for the approximation (1) is “Newton’s approximation”.

Local linear approximation is the key idea of calculus. While nonlinear functions can be rather com-
plicated, linear functions are simple and easy to deal with. The fundamental strategy of calculus is

to replace a nonlinear function f (difficult) with its local linear approximation (easy). When we do this,
calculations are greatly simplified, and the approximation is often good enough that the results are still
useful. Most of the great formulas of calculus (such as the chain rule and the product rule) can be discovered
easily by using the tangent line approximation (1) at the crucial moment.

One of the advantages of equation (1) is that it still makes sense when f : R™ — R™. Let’s parse Newton’s
approximation in this case:

f(x) = f(a) + f'(a) (x —a).
N e

mx1 mx1 ? nx1

Now z and a are points in R", so —a € R™ (it is an n X 1 column vector). And f(z) and f(a) are points
in R™ (so they have shape m x 1). What type of object should f’(a) be in order for this equation to make
sense? We can see that if f'(a) is an m X n matriz, then Newton’s approximation makes perfect sense.

f(x) = f(a) + f'(a) (x — a).
— N =

mx1 mx1 mxn nx1

So, in multivariable calculus, f'(a) is a matriz.
If f:R™ — R™ is differentiable at a, then f’(a) is an m x n matrix.

Note: The above “definition” of f’(a) is only an intuitive definition (we are saying that “f’(a) is the matrix
that appears in Newton’s approximation”). However, it is possible to make the definition precise, as follows.
To say that a function f:R"™ — R™ is “differentiable” at a point a € R™ means that there exists an m x n
matrix f’(a) such that the function

which tells us the error in Newton’s approximation, satisfies

i —A®)_ 2)

vl —al] =
This is a precise way of saying that the error in Newton’s approximation is “small” when x is close to a. In
fact, the above equation tells us that the error is small even when compared with ||z — al|.

Fact: If f is differentiable at a then the matrix f’(a) is unique. To prove this, suppose that A and B are
real m X n matrices which satisfy

@ f@ - Aw—a) @)= f@) - Bz —a)

=0.
z—a [z = af z—a [l = af

It follows that

0= tim A= Bz =0)
a=a |l —al
Let e; = [1 0 --- O]T. Taking x = a + te;, we see that
A— B)(t
0= tim A=BeD)) g
=0 [teq]|

This shows that the first column of A — B is 0. Similarly, the remaining columns of A — B are also 0. Hence,
A=B.0O

Definition: A function f : R™ — R™ which is differentiable at each point of R™ is called a “differentiable”
function.

Note: If we define Ax = = — a, then Newton’s approximation can be written equivalently as
fla+ Az) ~ f(a) + f'(a)Ac. (3)

The approximation is good when Az is small. Sometimes this way of writing Newton’s approximation is
slightly more convenient.
If we also define
Af:f(a—i—Ax) _f(a’)7

so that Af is the change in the output of f when the input changes from a to a + Az, then Newton’s
approximation can be written as

Af ~ f'(a)Aa. (4)
In words, if we change the input to f by a small amount, then the change in the output is proportional
to the change in the input (to a good approximation, at least). The “constant of proportionality” (loosely
speaking) is the matrix f/(a).
Note: This matrix represents a linear transformation which is denoted D f(a), and you might consider the

linear transformation to be the more fundamental object. Here is what the mathematician Dieudonne had
to say about the definition of the derivative.

That presentation, which throughout adheres strictly to our general “geometric” outlook on
analysis, aims at keeping as close as possible to the fundamental idea of calculus, namely the
“local” approximation of functions by linear functions. In the classical teaching of calculus, this
idea is immediately obscured by the accidental fact that, on a one-dimensional vector space, there
is a one-to-one correspondence between linear forms and numbers, and therefore the derivative at
a point is defined as a number instead of a linear form. This slavish subservience to the shibboleth
of numerical interpretation at any cost becomes much worse when dealing with functions of
several variables : one thus arrives, for instance, at the classical formula (8.9.2) giving the partial
derivatives of a composite function, which has lost any trace of intuitive meaning, whereas the
natural statement of the theorem is of course that the (total) derivative of a composite function
is the composite of their derivatives (8.2.1), a very sensible formulation when one thinks in terms
of linear approximations.

2 Two examples

In this section we’ll look at two important examples of computing the derivative in multivariable calculus.
In the examples below, a is a point in R™, and Az is a small vector in R"™.

2.1 Example 1: f(z) = Ax
Let A be an m x n matrix and let f : R™ — R™ be the function defined by
fl@) = Az for all z € R"™.
Then
fla+ Az) = A(a + Ax)
= éfq/—i-AAx.
f(a)

Comparing this with Newton’s approximation (3) reveals that
J'(a) = A.

Comment: In this example, the error e(x) in Newton’s approximation is 0, so certainly equation (2) is
satisfied.

2.2 Example 2: f(x) = ||z|?

In the example below, we’ll make use of the following facts about vector arithmetic. Let u,v € R™ (so u and
v are n X 1 column vectors). The dot product of u and v is denoted (u,v). We have

1. (u,v) = uTv =vTu.
2. Jlull* = (u, u).
3. The expression |lu + v||? can be expanded as
w4+ v||? = (u+v,u+v)
= (u,u) + (u,v) + (v,u) + (v,v) (FOIL rule for dot products)
= |Jul* + 2uTv + o).
(Compare this with the formula (a + b)? = a? + 2ab + b2 that we learn in high school algebra.)

We are ready to present our next example. Let f:R™ — R be defined by

fl@) = |lz|>.
Then
fla+ Az) = [la+ Azl
= |la|]* + 2a" Az + || Az|?
——"

negligible
~ |la||® + 2a" Az.

The term ||Az||? is negligibly small because we are squaring an already small number. Comparing the above
approximation with Newton’s approximation (3), we discover that

f'(a) = 2a".
Comment: In this example, the error in Newton’s approximation is e(z) = ||z — a||?, which I claimed is
“negligibly small”. To be more precise, the condition (2) is indeed satisfied because

2
= lim e = al = lim ||z —a]| = 0.
z—a ||z —al z—a ||z —dl z—a

3 The chain rule

Let’s use Newton’s approximation to discover the chain rule. Suppose that h : R™ — R™ is differentiable at
a and g : R™ — R¥ is differentiable at h(a). Let f : R™ — R* be the function defined by

f(z) = g(h(x)) for all z € R™

If Az € R™ is small, then we have

We used Newton’s approximation twice, first on h and then on g. Look at how the chain rule just pops out!
Comparing this result with Newton’s approximation (3) reveals that

f'(a) = g'(h(a))l (a).

It’s easy to discover the chain rule by using Newton’s approximation. The above derivation can be made
into a rigorous proof by keeping track of the error terms when using Newton’s approximation.

Another explanation: Here is a slightly different, and perhaps even more direct, way to understand the
chain rule. The change in the input is Az. The change in the output of h is

Ah =~ K (a)Ax.
The corresponding change in the output of g is
Ag =~ g (h(a))Ah = ¢'(h(a))h (a)Awx.

In other words, when the input changes by Az, we can first multiply by A’(a) to get the change in the output
of h, and then multiply by ¢’(h(a)) to get the change in the output of g, and so we find that change in the
output of f is

Af = g'(h(a))h (a)Ax.

Comparing this with equation (4), we discover that

f'(a) = g'(h(a))l' (a).

4 The gradient vector

Suppose that f : R™ — R is differentiable at a point a € R™. Then f'(a) is a 1 x n matrix (also called a
“row vector”). If we take this row vector and flip it sideways (that is, transpose it) we get a column vector
which is called the gradient of f at a, and which is denoted V f(a):

Vi) = f'(a)".

When I define the gradient in this way, I'm following the convention that the gradient is a column vector
rather than a row vector. This convention is common in the world of applied math and optimization, but it’s
not a universally adopted convention. For example, Terence Tao calls the row vector f'(a) the “gradient” of
f at x in his book Analysis II.
Newton’s approximation f(a + Az) = f(a) + f’(a)Az can be expressed in terms of the gradient vector
as follows:
fla+Az) = f(a) + Vf(a)" Az = f(a) + (V/(a), Ax).

The gradient vector V f(x) has a nice geometric interpretation, which we will now explain. Suppose that
we start at the location ¢ and move a short distance ¢ in the direction of a unit vector u. Our new location
is a + tu, and the value of f at our new location is

fla+tu) = f(a) + (Vf(a),tu) = f(a) + E{V[(a),u).

Question: In which direction should the unit vector v be pointing if we want the value of f to increase as
much as possible? This is equivalent to asking for which unit vector u is the quantity (V f(a),u) as large as
possible.

Answer: Recall that
(Vf(a),u) = IIVf(a)HMCOSW) = [IVf(a)]| cos(6)

1

Vf(a)=2a

Dotted line shows
a level curve of f

Figure 1: We are visualizing a gradient vector V f(a) for the function f(x) = |z|*>. The gradient vector
points in the direction of steepest ascent, which in this example is directly away from the origin.

where 6 is the angle between V f(a) and u. The largest possible value of cos(f) is 1, which occurs when
6 = 0, which means that u points in the same direction as V f(a). We conclude that

the gradient vector V f(a) points in the direction of steepest ascent.

In other words, if we are located at a and we want the value of f to increase as rapidly as possible, we should
move in the same direction as V f(a).
If we want the value of f to decrease as rapidly as possible, we should move in the opposite direction.

The negative gradient vector —V f(a) points in the direction of steepest descent.

Example: Let f : R2 — R be defined by
fla) = |||,

Visually, ||z|| is the distance from the origin to the point x, and so f(x) tells us the squared distance from
the origin to x.

If you are located at a point a, which way should you move to make f increase as rapidly as possible? Of
course, without knowing anything about vector calculus, you would say that you should move directly away
from the origin. And indeed, this intuition is consistent with what we have learned about vector calculus:
f'(a) =2a™ and V f(a) = 2a, which is a vector that points away from the origin. (See figure 1.)

5 Minimizing a differentiable function f:R"” — R

Many important problems in applied math or engineering can be formulated as optimization problems. We
want to get the most bang for our buck. We want to find a set of parameters which minimizes some cost.
In a regression problem, for example, we might want to find a list of parameters for a neural network which
minimizes the mean squared error for our predicted target values. In this section we’ll learn two strategies
for minimizing a differentiable function f : R” — R.

Definition: Let f : R® — R. To say that a point a € R™ is a “local minimizer” of f means (roughly
speaking) that f(a) < f(z) for all nearby points x. More precisely, there is a ball B centered at a such that
fla) < f(z) for all z € B.

Definition: To say that a point @ € R" is a “global minimizer” of f means that f(a) < f(z) for all x € R™.
Any global minimizer of f is automatically a local minimizer, of course.

Fact: Suppose that a is a local minimizer for a function f : R — R. If f is differentiable at a, then

Vf(a)=0.

Reason: We'll argue by contradiction. Suppose V f(a) # 0 and ¢ is a small positive number. The value of
f at the nearby point x = a — tV f(a) is

f(@) = f(a) + (Vf(a), =tV f(a)) = f(a) = t|Vf(@)|* < f(a).

This contradicts the fact that a is a local minimizer of f. O

This argument can be summarized as follows: if Vf(a) were not equal to 0, then we could reduce the
value of f by taking a short step in the negative gradient direction. That would contradict the fact that a
is a local minimizer of f.

5.1 Strategy 1: Set the gradient equal to 0 and solve for «a

If a differentiable function f : R™ — R has a global minimizer, the above fact gives us a strategy for how to
find it: we write down the equation

Vf(a) =0 (5)

and solve for a. If there is only one solution, it must be the global minimizer of f. If equation (5) has more
than one solution, we can check each of them to see which one gives us the least value of f.

As we'll see in section 6 below, this strategy works very well in the important case that f(z) = ||Az —b]|?
(for some matrix A € R™*™ and vector b € R™). However, a potential difficulty with this strategy is that
for more complicated functions the equation V f(a) = 0 is typically a nonlinear system of equations, and
solving such a nonlinear system of equations might not be easy.

5.2 Strategy 2: Repeatedly move in the direction of steepest descent

An alternative strategy for minimizing a differentiable function f : R™ — R is to repeatedly take short
steps in the direction of steepest descent. Suppose that our current location is 2% € R”. (The k here is a
superscript, not an exponent.) We choose a small positive number ¢ and move to the new location

bt = gk —tV ().

When moving from z* to the new point 2**!, we are taking a short step in the negative gradient direction,
which is the direction of steepest descent. When we do this, the value of f decreases a little bit (assuming
that we take a sufficiently small step). The gradient descent algorithm repeatedly takes short steps in the
negative gradient direction, until eventually converging to a local minimizer of f.

The parameter ¢ > 0 is a “step size” that controls how large our steps are. A larger value of ¢ is more
aggressive. If t is too large, then the gradient descent iteration might not converge at all. A small value
of t is safe, conservative, and leads to slow convergence. There are various strategies for choosing a good
value for ¢, including adaptive step size strategies where the value of ¢ changes from one iteration to another
according to a certain rule. The simplest approach, however, is to use a fixed step size ¢ which is chosen by
trial and error.

6 Solving least squares problems

Let A € R™*™ and b € R™. In linear algebra, we often want to solve the linear system of equations Az = b.
If b is not in the column space of A, then there is no solution. What should we do then? Should we just give
up? No! Although we can’t solve Ax = b exactly, we can do the next best thing: we’ll find a vector = such
that || Az — b|| is as small as possible. Equivalently, we choose 2 to minimize the function

fx) = || Az — b,

(Squaring the norm of the residual here makes the math work out more nicely, and it does not change the
optimal choice of z.) The problem of finding a vector x which minimizes this function f is called a “least
squares problem”, and a point z which minimizes f is called a “least squares approximate solution” to
Axr =b.

How can we find a point « which minimizes f? We can use the strategy described in section 5.1 — we set
the gradient of f equal to 0 and solve for z. Let’s compute the derivative of f using the chain rule. Notice
that

where
h(z) = Az —b and g(u) = ||ul|*

We have already discovered that the derivatives of g and h are
P(z)=A and ¢'(u)=2uT.

By the chain rule, the derivative of f is

f'(x) = g'(h(z))h' ()

=2(Az —b)TA.
Thus, the gradient of f at a point z is
Vi) = f'(z)" =247 (Az —b).
Setting the gradient equal to 0, and multiplying through by 1/2, we find that
AT(Az —b) =0
or equivalently
AT Az = ATb. (6)

This is a famous equation. This linear system of equations is called the “normal equations”, and it is the
key to solving least squares problems. We can solve for = using a technique such as Gaussian elimination.

Comment: Because the function f must have a minimizer, which necessarily satisfies f/(x) = 0, the
equation (6) is guaranteed to have a solution. If the coefficient matrix A7 A is invertible, then the solution
is unique.

7 Linear regression

In a regression problem, we are given a training dataset consisting of feature vectors z1,...,zx € R? and
corresponding target values y1,...,yny € R. Our goal is to find a “prediction function” f : R¢ — R which
has the property that

flz;))=y; fori=1,...,N.

We hope that our prediction function f will make continue to make good predictions on data which is not
included in the training dataset, but there is no guarantee that this will be the case.
In linear regression, we assume that f is a linear function (or technically, an affine function). In other
words, we assume that
fC @)=po+ B+ + Baza

T

Td

for some scalars (g, 81, ..., B4
How should we choose the coefficients 5;7 The most common approach is to choose them to minimize
the mean squared error

1 & 2 1 &
L(B):Nz<f(i)—yz’) :NZ(ﬁO"‘ﬂliEil+"'+deid_yi)2-
T i=1 T i=1

Bo Z41
fr
ZTid
Ba
The mean squared error can be written concisely using matrix and vector notation as follows:
L(B) = % IXB - yI?
where
1L 211 - T4 Bo "
I @1 -+ w24 631
X == 9 ﬁ = . 9 a‘nd Y=
1 xy1 -+ xng Ba N

Notice that minimizing L(3) is a least squares problem, so we can minimize L using the same approach that
we used in section 6. The gradient of L is

VL) = £ XT(XB - y).

We can minimize L(3) by setting the gradient equal to 0 and solving for 8. The resulting system of equations
XT(XB—y)=0 orequivalently X7TX3=XTy

is called the “normal equations”, as discussed in section 6.

8 Logistic regression

In a classification problem with two classes (called class 0 and class 1), we are given a training dataset
consisting of feature vectors z1,...,zy € R% and corresponding labels 41, ...,yn € {0,1}. Our goal is to
find a “prediction function” f : RY — [0,1] such that f(z;) ~ y; for i = 1,..., N. Given a feature vector
r € R? we think of f(x) as being an estimated probability that the example described by x belongs to
class 1. We can think of a corresponding label y € {0,1} as being a “ground truth” probability which
reflects certainty about whether or not the example described by = belongs to class 1.

In logistic regression, we take the prediction function f to have the form

f(z)=0(Bo+Brx1+ -+ Baxa)
Z1

Td

where o : R — R is the “sigmoid function” defined by

Notice that 0 < o(u) < 1, so the output of o can be interpreted as a probability. The sigmoid function is
useful in machine learning because it converts real numbers into probabilities. It is arguably the simplest
and most elegant smooth function which does this job for us. (Just try to think of anything simpler.)

Our goal is to choose the coefficients By, 51, .. ., 84 so that the estimated probability f(x;) tends to agree
well with the ground truth probability y; (fori =1,..., N). To measure the agreement between an estimated
probability ¢ and a ground truth probability p, we will use the “binary cross-entropy” loss function defined
by

t(p,q) = —plog(q) — (1 —p)log(1 —q).
The inputs p and g are required to satisfy 0 < p < 1 and 0 < ¢ < 1. Although the formula for ¢(p, q) looks
strange and unmotivated, it is in some sense a very natural and beautiful way to measure the agreement
between an estimated probability ¢ and a ground truth probability p. If ¢ agrees closely with p, then ¢(p, q)
is small. If ¢ does not agree well with p, then ¢(p, q) is large. For any given p € (0, 1), the value of ¢ that
minimizes £(p,q) is ¢ = p. One way to discover this function ¢(p, q) is to view the label of example i as a
Bernoulli random variable Y; which is arbitrarily assumed to satisfy

P(Y; =1)=0(Bo+ frx1 + -+ + Bazra),

and then use maximum likelihood estimation to estimate the coefficients £g, 51, ..., 84. When we work out
the details, the binary cross-entropy loss function appears in the log-likelihood formula.
The coefficients 8; (for j = 0,...,d) are chosen to minimize the average binary cross-entropy

N
1
L(B)= DL ().

T i=1

Bo

Ej1

Ba
We can minimize L using the gradient descent algorithm. But first, we must derive a formula for the gradient
of L.

8.1 Computing the gradient of L

The formula for f can be written more concisely as

1
Tl

f(z Y=0(2F'B) where i is the “augmented” feature vector & =
X1 Zd

Zq

With this notation, the average cross-entropy can be written as

where L; : R — R is defined by
Li(u) = £(yi, 0(u)).
By the chain rule,

! _ l o 1 (AT g\ 2T
L(B) = 5 2 L@ il (7)

Thus, computing the derivative of L has been reduced to computing the derivative of the L;. But, L; is a
function of a single variable, so computing L}(u) is merely a problem from single-variable calculus.

Here is my hint for computing L}(u): simplify the formula for L;(u) as much as possible first. Using the
formulas for £(p, q) and o(u), we have

e e
Li(u) = —yilog <1+eu> — (1 —y;)log (1 - 1+e“)

e 1
—y; 1 —(1—y;)l
Yi Og<1+e“) (Yi) 0g<1+6”>

= —yilog(e") +yilog(l +e*) + (1 —y;) log(1 + €*)
= —yu+ log(1 + €*).

Look how much that simplified! We are now ready to compute L}(u) using single-variable calculus:

eu

Lifw) = —pi + s = o)~y ®

This is a delightfully simple result. It has an intuitive meaning also: if the estimated probability o(u) agrees
perfectly with the ground truth probability y;, then the derivative is 0, suggesting that no change to the
value of u is necessary. The simplicity of the formula (8) makes me feel that the sigmoid function and the
binary cross-entropy loss function are meant to be together, united in the beautiful function L;(w). This is
why Pytorch provides the BCEWithLogits loss function.

Combining equation (8) with equation (7), we see that

1 N
L'(B) = N Z(U(iﬁfﬁ) — i) -
Thus,
1 N
VL(B) = L'(3)" = 5 X _(0(F7 B) —y)ai

With this formula for the gradient of L, we are now ready to implement logistic regression from scratch,
using gradient descent to find a vector € RT! which minimizes L(f).

11

