Quick calculus

Daniel O’Connor

These notes are intended to be a quick summary of some of the key
intuition behind calculus. The notes are not self-contained and are meant
only to supplement a calculus class, not to stand alone. Moreover, the
notes are a work in progress. If you have any questions or suggestions
please feel free to email me at daniel.v.oconnor@gmail.com.
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1 Introduction

The purpose of these notes is not to give rigorous proofs or definitions, but just
to show how easily calculus can be discovered using short, intuitive arguments.
Much of calculus comes from the equation

flx+Az) ~ f(z) + f'(2) Az (1)

which expresses the fact that f’(x) is the instantaneous rate of change of f at
x. The approximation is good when Az is small. Equation (1) is practically
the definition of f/(z).

Equation (1) can be restated as

f) = f@) + f'(2)(y — ). (2)

Calculus can be viewed as the study of functions that are “locally linear”, in
the sense that the approximation (2) is good when y is close to x. Perhaps the
phrase “f is differentiable at 2” could even be replaced with “f is locally linear
at z”.

The key technique of integral calculus is to chop things up into tiny pieces,
compute the contribution of each piece (with the help of the approximation (1)),
then add up all the contributions to get the total result.

Throughout these notes, we’ll assume (without saying so) that all functions
are as smooth as is necessary for the arguments to make sense.

2 Single variable calculus

2.1 Fundamental theorem of calculus

Chop up the interval [a, ] into tiny subintervals [z;, z;41]. Then

F) = fla) =Y flwis1) — fla:)
N————’ B N————

total change ) little change

mZﬂmmi

~ /abf'(:c) dx.

The total change (across a big interval) is the sum of all the little changes (across
tiny subintervals).

Note: It seems plausible that, by chopping up the interval [a, b] into even
smaller pieces, we could make the approximation better and better — in fact, it
seems that we could make the approximation as close as we like. This implies
that the two quantities must in fact be equal. Similar reasoning will be used
throughout these notes to move from approximate equality to exact equality,
and we won’t bother to repeat this argument in each case.



Note: By using this strategy to compute the total change, we have found
ourselves computing an “integral”. This is one reason that integrals are so
important. An intuitive definition of f; g(x) dzx is just this: First chop up [a, ]
into tiny subintervals [z;,z;y1], and for each i select a point z; € [z;, zi41].

Then .
Zg(zi)sz‘%/ g9(z) du.

A precise definition would state that f: g(z) dzx is in some sense a limit of such
approximations.
2.2 Other fundamental theorem of calculus
Let F(z) = [ f(s)ds. Then
z+Azx

F(x+ Az) — F(z) = / f(s)ds

wm+Az
~ / f(z)ds
= f(x)Az. 3)

By comparing (3) with (1), we discover that F'(z) = f(z).

2.3 Chain rule
Let f(z) = g(h(z)). Then

2.4 Product rule
Let f(z) = g(z)h(z). Then
flx 4+ Az) = g(x + Ax)h(z + Ax)
~ (9(z) + ¢ (x) Az)(h(x) + h'(z) Ax)
= g(x)h(x) + ¢'(2)h(x) Az + g(z)h' (x) Az + ¢ (2)h' (x) Az®
~ f(@) + (¢ (@)h(z) + g(x)h'(x)) A (5)

By comparing (5) with (1), we discover that f'(x) = ¢'(z)h(z) + g(z)h'(z).



2.5 Integration by parts
We can integrate both sides of the product rule to obtain the integration by

parts rule
b b
dg dh b
—hdx =— —d h|..
| e == [ oGt o+ gl

Linear algebra intuition (optional) From a linear algebra point of view,

integration by parts says that the adjoint of % is —% (in a setting where the

boundary term vanishes). In other words, % is anti-self-adjoint, hence normal.

We thus have reason to hope (based on the spectral theorem) that there is (in

some sense) an orthonormal basis of eigenvectors for %. Fourier series can be

discovered in this way.

2.6 Taylor series approximation

o) = fao) + [ " f(s)ds

<o)+ [ " Plao) + fao)(s —z0) ds

first-order approximation to f’(s)

= f(wo) + @)z = w0) + 37" (@0)(w — 70)".

Using a higher-order approximation to f’(s), such as

/(5) = F'(zo) + £ (o) = w0) + 3 " (o) (s — zo)?

yields higher-order Taylor series approximations for f(x).

2.7 L’hospital’s rule
Assume that f(zg) = g(z9) =0, and ¢'(xg) # 0. Then

f@) _ oy f@0) + f(@o)(2 — a0)

AEL g(@) ~ 25 glz0) + ¢ (wo) (@ — w0)
f' (o)
g'(xo)

3 Multivariable calculus

Equation (1) works perfectly in the multivariable case where f : R™ — R™.

Il et

mx1 mxn



Note that f/(x) is now an m X n matrix.
If we prefer to think in terms of linear transformations rather than matrices,
we can write

flz+ Ax) = f(x) + Df(z)Ax

where D f(x) is a linear transformation that takes Az as input. This is what it
means for f to be “locally linear” in the multivariable case.

(Extending the notion of “locally linear” to the multivariable case is one
motivation for studying linear transformations in the first place. The need to
describe linear transformations concisely leads us to introduce matrices.)

If f:R™ — R, then f'(x) is a 1 X n matrix, and f'(z)Az = (Vf(x), Az)
where Vf(z) = f/(z)”. In this case, (1) can be written as

fle+Ax) = f(z) +{Vf(z), Az). (6)

nx1l nx1

3.1 Directional derivative
Let f:R™ — R and let u € R™. Then

D,f(z) = }1_{% ; (by definition)
o T+ (@), )~ f()
t—0 t
= (Vf(z),u)

When u = ¢; (the ith standard basis vector), we discover that the ith component
of Vf(x) is the ith partial derivative of f at x:

0/()
Vi) =| : |. (7)

of(x)
Oy

What direction u should we choose to make the directional derivative D, f(z)
as large as possible? To make the inner product (V f(x), u) as large as possible,
we should choose u to be in the same direction as V f(z). Hence V f(z) points
in the direction of steepest ascent for f at x.

3.2 Jacobian

Let f: R™ — R™. The matrix f'(x) is called the “Jacobian” of f at x.
Let v; be the ith row of f'(x). Looking at equation (1) component by
component, we see that

filz + Az) = fi(z) +v;Ax,



where f; is the ith component function of f. This reveals that v; = f/(x) =
Vfi(x)T. Using (7), we obtain the formula

Ofai(z) ..  Ofi(x)
Oz Oy
flla)y=1| o (8)
afm(aj) .. Ofm(w)
Oz Oxn,

3.3 Note on matrix transpose

If  and v are column vectors in R”, then (u,v) = u”v. We will sometimes use

the fact that if M € R™*", then
(Mz,y) = (Mxz)"y
_ IETMTy
(x, MTy).

This is the key property of the transpose matrix.

3.4 Hessian

Let f:R™ — R, and let
g(x) = Vf(@).
So g:R"* — R™.
The matrix ¢’(x) is called the “Hessian” of f at x, and is sometimes denoted
H f(z). Equations (7) and (8) together yield the formula

9% f(x) 9% f(x)
Br% e 0,011
Hf(z) = : . :
9% f(x) 9 f(x)
0z10x, e Ox2

Note that
Vi(x+ Azx) =~ Vf(x)+ Hf(x)Ax.

We might notice by experimentation that mixed partials are equal, which
implies that Hf(x) is symmetric. On the other hand, we can argue directly
that H f(z) is symmetric, as follows. First note that

flz+ Au+ Av) = f(x + Au) + (Vf(x + Au), Av)
~ f(x) + (Vf(x),Au) + (Vf(x), Av) + (H f(x)Au, Av).

Alternatively,

flz+ Au+ Av) = f(x 4+ Av) + (Vf(z + Av), Au)
~ f(z) + (V[ (z), Av) + (V[(2), Au) + (H f(2) Av, Au).



Comparing these two approximations shows that
(H f(x)Au, Av) = (Au, H f(x)Av)

when Au and Aw are small, which shows that H f(z) is symmetric.

The symmetry of H f(z) implies that mixed partials are equal.

(A similar argument could directly show equality of mixed partials without
mentioning the Hessian.)

3.5 A multivariable product rule
Suppose g, h : R — R and
f(z) = {g(2), h(z)).
Then
flz+ Az) = (g(x) + g'(2) Az, h(z) + I (z) Az)
~ (g(x), h(z)) + (¢'(x) Az, h(x)) + (g(x), W (v) Ax)
= f(x) +(¢' (@) h(z) + W (2)" g(x), Az).
V()

3.6 Multivariable chain rule

The chain rule derivation above works perfectly in the case where h : R® — RP
and g : RP — R™. However, it’s also enlightening to directly intuit the chain
rule formula in the special case where

f(x) = g(h(z),. .. hy(x)),
and g : RP - Rand h; : R - R. (So f : R = R.) Let’s assume p = 2 for
simplicity.
First note that
g(ur + Aug, ug + Aug) — g(u, ug) = g(ur + Aug,us + Aug) — g(ug, us + Aug)
+ g(u1, ug + Aug) — g(u1, ug)
~ Dig(u1,uz + Aug)Auy + Dag(ur, uz)Aug
~ Dig(u1,ug)Auy + Dag(uy, uz)Aus.
This is just another way to say that g(u+Au) =~ g(u)+(Vg(u), Au). We already
knew this, but this derivation explains why we expect g to be differentiable when
g has continuous partial derivatives.
Now we compute f'(z):
flz+ Az) = g(hi(z + Ax), ha(z + Ax))
hi(z) + hy(z)Az, he(x) + hy(x)Ax)
hi(z), ha(x)) + D1g(h1(2), ha(2))hi (2) Az + Dag(hi(x), ha(z))hy(z) Az
2) + (D1g(hy (2), ha ()1 (2) + Daglh (2), ha(2)) b () Az
£ (@)

~g(
~ g(
I




Of course, this is just another way of saying that f'(z) = ¢'(h(z))h'(z), which
we already knew.

3.7 Multivariable Taylor series

Taylor series approximations to f : R” — R can be derived by introducing g(t) =
f(zo+t(z—xp)), and computing the single variable Taylor series approximations
to g. For example,

9(1) ~ 9(0) + ¢/(0) + 3"(0) ©Q

From the chain rule,

g'(t) = f'(xo + t(x — z0))(x — wo)
= (Vf(xzo+t(x —xg)),x — o).

The product rule and the chain rule together allow us to compute g”(t):
9"(t) = (x — o, Hf (w0 + t(z — x0)) (2 — 20)).

Equation (9) becomes

£(2) = (o) +{Vf(wo), — 20) + 3 (& — z0) Hf(zo)(w —w0)  (10)

which is the second order Taylor series approximation to f at x. Higher order
Taylor series approximations can be derived also, but this requires a skillful use
of notation.

3.8 Classifying critical points

When Vf(xzyg) = 0, equation (10) gives us useful information about how f
behaves near x. In particular, if H f(z) is positive definite, then (by definition)

(z — x0)TH f(x0)(z — x0) >0

for all  # xg, which shows that f has a local minimum at z.
Similarly, if H f(zo) is negative definite, then f has a local maximum at xg.
If Hf(xg) is indefinite, then f has a saddle point at xg.

3.9 Lagrange multipliers
Suppose z* is a local minimizer for the problem
minizmize f(z)
subject to g(z) =0.
Here f: R — R and g : R™ — R. Then, for all sufficiently small Az, we have:

if g(z* + Ax) =0, then f(z* + Az) > f(z*).



(Otherwise z* is not a local minimizer.) Making the approximations

g9(x" + Ax) ~ g(z") + (Vg (™), Ax)
and  f(z" + Ax) ~ f(z") + (Vf(z"), Ax),

we conclude that

if (Vg(z*), Axz) =0, then (Vf(z*),Az) >0
for sufficiently small Az. It follows that

if (Vg(z*), Az) =0, then (Vf(z*), Az) =0

for sufficiently small Azx.
In other words, V f(z*) is orthogonal to everything orthogonal to Vg(z*).
This implies that V f(z*) is parallel to Vg(z*):

V(") = AVg(z™)

for some A € R.
A similar argument works when ¢ : R® — R™, but in that case we need to
use the four subspace theorem from linear algebra.

3.10 Definition of integral

Suppose f : R — R, where R = [a,b] X [¢,d] C R%. Chop up [a,b] into
tiny subintervals [z;, z;41], and chop up [c,d] into tiny subintervals [y;, y;+1]-
The rectangle R is correspondingly chopped up into tiny subrectangles R;; =
[@i, xit1] X [y;,y;+1]. For each (4,7), pick a point z;; € R;;. Then

Zf(zij)Axiij %/ fdxdy.
i,j R

This integral is also denoted f r f(x,y)dxdy. A precise definition would state
that [ g f dz dy is in some sense a limit of approximations like this.

Now suppose that f : Q@ — R, where Q C R? is not a rectangle, but is
contained in a rectangle R = [a,b] x [c,d]. We can extend f to a function f
defined on the entire rectangle R by declaring that f is equal to 0 at all points
of R that don’t belong to . We can then define [, fdxdy = [, fdx dy.

A similar definition allows us to integrate over subsets of R” when n > 2.



By the way, notice that

/Rf(ﬂc,y) dvdy =Y f(xi,y;) A Ay;

4,7
=Z Zf(xi,yj>ij Az;
d]
%Z/ fziy) dy Az

%/ab/cdf(x,y)dydx‘

Of course, we could equally well argue that

/Rf(x,y)dxdyz/cd/abf(x,y)dxdy.

This is Fubini’s theorem. Similar arguments give us Fubini’s theorem in higher
dimensions.

3.11 Change of variables formula

Let X and Y be open subsets of R, and assume that T : X — Y is 1-1 and
onto. Let f:Y — R.

Chop up Y into tiny subsets Y;. Because of the 1-1 correspondence between
X and Y, X is correspondingly chopped up into tiny subsets X; such that
T(X;) =Y.

For each i, pick a point y; € Y;. Let z; be the corresponding point in Xj.
So T'(xi) = yi.

If x is close to z;, then

T(x) ~ T(x;) + T (x5)(x — x5).

The function
Ti(z) = T(xi) + T'(xi)(x — x:)
is called the “local linear approximation” to T at x;, and T'(z) ~ T;(x) when x

is near ;. .
Let Y; = T;(X;). Y; is an approximation of Y;. A key fact is that

m(Yi) = [ det T’ (z;)[m(X,).

Here m(S) denotes the “measure” of a subset S of R™, as discussed in section
3.10.

When n = 2, you can derive this fact easily by drawing a picture. If R is a
tiny square, and A is a 2 X 2 matrix, then AR is a parallelogram. With high

10



school geometry you can compute the area of this parallelogram, and discover
that the answer is | det A|m(R). If the determinant has previously been dis-
covered by deriving formulas for the solution of 2 x 2 or 3 x 3 linear systems
(discovering Cramer’s rule), then it’s surprising and beautiful that the determi-
nant pops up here too. A picture proof is also straightforward (but tedious) in
the case where n = 3. Based on this evidence, we would not hesitate to guess
that the formula holds for any n. This can be proved using linear algebra — for
example the SVD provides a nice way to look at it.

DL

We're now ready to derive the change of variables formula for integration:
[ s~ Y famv)
~ Z fyoym(Y3)
=D f(T(x))] det T' () [m(X;)
i

R~ /X f(T(x))|det T'(z)]| da.

3.12 Definition of line integral

Let C be a smooth directed curve in R™, and let f be a vector field on C (so
f:C—R").

Chop up C into tiny curves C;, each of which is approximated by a line seg-
ment spanned by a vector Az;. (The direction of Az; is chosen to be consistent
with the direction of C'.)

For each i, pick a point z; € C;. Then

ST (f (), Aay) ~ / fde.

i c

A precise definition would state that |, ¢ [ -dx is in some sense a limit of approx-
imations like this.

A similar definition allows us to integrate a scalar-valued function over C.
In this case we don’t require C' to have a direction.

3.13 Definition of surface integral

Let S C R3 be a smooth oriented surface, and let f be a vector field on S (so
f:8—R3).

11



(For S to be “oriented” means, roughly speaking, that one side of S has been
designated the “outside” and the other side has been designated the “inside”.
Some surfaces, such as a Mobius strip, can’t be oriented.)

Chop up S into tiny pieces S;, each of which is approximated by a parallel-
ogram spanned by vectors u; and v; (chosen so that u; x v; points “outward”).

For each 4, pick a point z; € S;. Then

Z<f(zi):ui X ;) R /Sf -dA.

%

A precise definition would state that [ g [ - dA is in some sense a limit of ap-
proximations like this.

A similar definition allows us to integrate scalar-valued functions over S. In
this case we don’t require S to have an orientation.

Differential forms viewpoint. At each point x € S, let w(z) be the alter-
nating bilinear function that maps (u,v) to (f(x),u x v). The function w is a
“differential 2-form” on S. We can integrate a differential 2-form over S using

a similar definition:
Zw(zi)(ui,vi) Q‘J/w.

This differential forms viewpoint suggests how to generalize the idea of integra-
tion to higher dimensional manifolds.

Question: Is it obvious that S can be chopped up into tiny pieces, each of
which is approximately a parallelogram?

Hint: Consider the case where S has a parametrization g : R — S, where
R = [a,b] x [¢,d]. Chop up R into tiny rectangles, and imagine how S is
correspondingly chopped up. Use the fact that g is “locally linear”. A linear
transformation maps a rectangle to a parallelogram.

By working this out in detail, we could express an integral over S in terms of
an integral over R. This gives us a way to evaluate surface integrals explicitly.

12



3.14 Fundamental theorem of calculus for line integrals

Suppose that C' is a curve connecting points a,b € R, and let f : R® — R.
Chop up C into tiny curves C; that start at x; and end at x;41. Then

f(b) = fla) = Zf(xi+1) = f (@)
N——— p N———’

total change little change

~ Z(Vf(fﬂi)vﬁl‘ﬁ

~ /;Vf(m)-dx.

(The total change is the sum of all the little changes.)

If C is a closed curve, so a = b, then fc Vf(z)-dx = 0. On the other hand,
suppose that g is a vector field on R™ and that the integral of g over any closed
curve is equal to 0. Can we conclude that g = V f for some function f : R* — R?
Yes. Select a point 2o € R™ arbitrarily, and define f(z) = f;o g(s)-ds, where the
line integral defining f is taken over any curve connecting xg to . (It doesn’t
matter which curve you pick, because the integral of g over any closed curve is
0, which implies that any two curves from zy to x must yield the same result.)
Then

z+Ax
f(a+ Ax) - f(z) = / o(s) - ds

rz+Azx
~ / g(x) - ds
= (9(z), Az). (11)

Comparing (11) with (6), we see that V f(z) = g(x).
In physics, a vector field g whose integral over any closed curve is 0 is called
“conservative”. The function f is called a “potential function” for g.

3.15 Green’s theorem

Let © be an open subset of R?, with a piecewise smooth boundary 0. Let
f be a vector field on R?, with component functions f; and f,. We want to
compute [, aq [ - dr, where € is oriented counterclockwise. Our strategy is to
chop up (2 into tiny squares and triangles ©;, and compute |, 20, f - dr for each
i. Each boundary 9€2; is given a counterclockwise orientation. When we add
up all those individual line integrals, wonderful cancellation occurs and we are
left with faﬂ f-dzx.

Let R be a tiny square of width Az and height Ay, centered at the point
(z,y). Then OR consists of 4 pieces:

13



OR3

8R4 hd aRQ
(z,y)
OR,
Therefore
[edr= fedr+ fedr+ fedr+ f-dr
OR 8R1 ORZ 6R3 8R4

~  fi(x,y—Ay/2) Az + fo (z + Ax/2,y) Ay
_fl ($7y+Ay/2)Ax—f2 (LL'—ALL‘/Zy)Ay

N_afl('ray) an('r7y)

S AyAz + T AzxAy
_ 8f2($7y) o Z’)fl(%y)

= ( o 9y AxAy.

A similar calculation works for triangles. Adding up all the contributions from
the squares and triangles €2;, we find that

_ Ofa(w,y)  Ofi(w,y)
/{mf-dr—/g( o — By )dwdy.

3.16 Divergence theorem

A very similar argument can be used to derive the divergence theorem:

/mf-dA:/Qdivfdm.

Here Q is an open subset of R™ with a piecewise smooth boundary, and f is a
vector field on R™. 02 is given the outward orientation. The strategy is to chop
up 2 into tiny n-cubes €2;, and compute the integral of f over 0f); for each i.

3.17 Stokes’ theorem (classical version)

Let S be an oriented surface in R? with a piecewise smooth boundary. Let F be
a vector field on R3. We want to extend the derivation of Green’s theorem to
this situation, to discover a theorem like Green’s theorem that relates f o Fodr
to an integral over S.

Our strategy is to chop up S into a bunch of tiny pieces S;, each of which is
approximately a parallelogram.
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Then we’ll compute f s, F - dr for each i. When we add up all these tiny
contributions, wonderful cancellation occurs, and we're left with |, ag I dr.

The key step is to calculate [, F - dr, where P C R? is a tiny oriented
parallelogram. Assume that the corners of P are x, z +u, x + v, and = + u + v.

r+v 7
T T+

u

Then

/F.dm (F(2), ) + (F(z + 1), 0)
oP

- (F(w+v)7u> - <F($),1}>
—(F'(z)v,u) + (F'(z)u,v).

Q

In the last step, we used the approximations
F(x+u)~ F(z) + F'(z)u, F(x+v)=~ F(z)+ F'(z)v.

At this point, the rest of the calculation is completely straightforward. We are
nearly done already. All we need to do now is write out everything in terms of

15



their components. Picking up where we left off:

—(F'(z)v,u) + (F'(z)u,v)
= (u,(F'(z)" = F'(2))v)

OF, OF, OF; OF,
- ((axl ) axz) ot (g - m)“?’)
OF,  OF, OF;  OF,
+“2(<axrz—axl)vl+(a@_a@)”3>
() (-2
Ors Oz Oxs  Oxa
o (om_omy
N (8332 8m3> 20— Ug2)
+ <gi — ggj’) (uzv; — ugv3)
oFy, OF;
(aml — am) (u1ve — ugvy)
=(Vx F,uxv)

All the partial derivatives, as well as V x F', are evaluated at z. It’s beautiful
that the answer can be expressed so simply, in terms of V and the cross product.

We're now ready to derive the classical Stokes’ theorem. Chop up S into
tiny pieces S;, each of which is approximated by a parallelogram spanned by

vectors u; and v; (chosen so that w; X v; points “outward”). Then

F-dr = F -dr

%Z<v XF,'U/Z' XUZ'>

R—*/VXF'dA.
S
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