
The sparse Levenberg-Marquardt algorithm for bundle
adjustment

Daniel O’Connor

These notes describe the sparse Levenberg-Marquardt algorithm for bundle adjustment.
I learned this algorithm from the book Multiple View Geometry in Computer Vision by
Hartley and Zisserman.

1 Notation

For notational convenience, a 3 × 4 camera matrix

pT1pT2
pT3

 will be represented by the vector

P =

p1p2
p3

 ∈ R12. This vector P ∈ R12 will be called a “camera vector”. (Here p1, p2 and p3

are vectors in R4.)
It will be helpful to define the function x̂ which takes as input a camera vector

P =

p1p2
p3

 ∈ R12

and a point X =

xy
z

 ∈ R3 and returns as output the projection of X using the camera

vector P . In detail,

x̂

([
P
X

])
=

[p11x+p12y+p13z+p14
p31x+p32y+p33z+p34

p21x+p22y+p23z+p24
p31x+p32y+p33z+p34

]
∈ R2.

The input to x̂ is the concatenation of P and X, which is a vector in R15. To save paper,

we will usually write x̂(P,X) rather than the more cumbersome expression x̂

([
P
X

])
.

Throughout these notes, we will often use block notation when writing vectors and ma-
trices.

1



2 Optimization problem

Our goal in bundle adjustment is to find camera vectors Pi ∈ R12 (for i = 1, . . . , n) and
points Xj ∈ R3 (for j = 1, . . . ,m) such that

x̂(Pi, Xj) ≈ xij for all i, j.

The points xij ∈ R2 are given, and the vectors Pi and Xj are unknown (but we have initial
guesses for them). To be precise, our goal is to solve the optimization problem

minimize
∑
i,j

1

2
‖x̂(Pi, Xj)− xij‖22. (1)

The optimization variables are P1, . . . , Pn ∈ R12 and X1, . . . , Xm ∈ R3.

3 Levenberg-Marquardt algorithm

Problem (1) is a nonlinear least squares problem. However, we could linearize the nonlinear
function x̂ using the first-order approximation

x̂(P + ∆P,X + ∆X) ≈ x̂(P,X) +
∂x̂(P,X)

∂P
↑

2×12

∆P
↑

12×1

+
∂x̂(P,X)

∂X
↑

2×3

∆X
↑

3×1

(2)

to obtain a linear least squares problem. The Gauss-Newton method solves a new instance
of this linear least squares problem at each iteration (always linearizing about the most
recent estimates of the vectors Pi and Xj). The Levenberg-Marquardt algorithm adds `2-
regularization to the linear least squares problems that are solved at each iteration. In other
words, the Levenberg-Marquardt iteration is

P k+1
i = P k

i + ∆P k
i , Xk+1

j = Xk
j + ∆Xk

j for i = 1, . . . , n, j = 1, . . .m

where the vectors ∆P k
i and ∆Xk

j are obtained by solving the optimization problem

minimize L =
∑
i,j

1

2
‖x̂(P k

i , X
k
j ) +

∂x̂(P k
i , X

k
j )

∂P
∆Pi +

∂x̂(P k
i , X

k
j )

∂X
∆Xj − xij‖22

+
λk

2

∑
i

‖∆Pi‖22 +
λk

2

∑
j

‖∆Xj‖22.

The optimization variables (in other words, the inputs to the function L) are the vectors
∆Pi ∈ R12 and ∆Xj ∈ R3 (for i = 1, . . . , n and j = 1, . . . ,m). The regularization terms

2



encourage the vectors ∆Pi and ∆Xj to be small, which means that the approximation (2)
is accurate.

The scalar λk is chosen adaptively, as follows. If∑
i,j

1

2
‖x̂(P k+1

i , Xk+1
j )− xij‖22 <

∑
i,j

1

2
‖x̂(P k

i , X
k
j )− xij‖22

(so the objective function value is reduced), then the vectors P k+1
i , Xk+1

j are accepted and

λk+1 = λk/10. Otherwise, the vectors P k+1
i , Xk+1

j are rejected. In this case, we increase

the value of λk by a factor of 10, and recompute the vectors P k+1
i , Xk+1

j . This process is

continued until the vectors P k+1
i , Xk+1

j are accepted (in other words, until a reduction in the
objective function value is achieved).

4 Solving the Levenberg-Marquardt least squares prob-

lems

To solve a linear least squares problem, we need only set the gradient of the objective function
L equal to 0 and solve the resulting linear system of equations. Setting the derivative of L
with respect to ∆Pi equal to 0, then taking the transpose of both sides, we obtain

∑
j

(
x̂(P k

i , X
k
j ) +

∂x̂(P k
i , X

k
j )

∂P
∆Pi +

∂x̂(P k
i , X

k
j )

∂X
∆Xj − xij

)T
∂x̂(P k

i , X
k
j )

∂P
+ λk∆P T

i = 0

=⇒

(
λkI12×12 +

∑
j

∂x̂(P k
i , X

k
j )

∂P

T
∂x̂(P k

i , X
k
j )

∂P

)
∆Pi +

∑
j

∂x̂(P k
i , X

k
j )

∂P

T
∂x̂(P k

i , X
k
j )

∂X
∆Xj

=
∑
j

∂x̂(P k
i , X

k
j )

∂P

T (
xij − x̂(P k

i , X
k
j )
)
.

Here I12×12 is the 12× 12 identity matrix. Setting the derivative of L with respect to ∆Xj

equal to 0, then taking the transpose of both sides, we obtain

∑
i

(
x̂(P k

i , X
k
j ) +

∂x̂(P k
i , X

k
j )

∂P
∆Pi +

∂x̂(P k
i , X

k
j )

∂X
∆Xj − xij

)T
∂x̂(P k

i , X
k
j )

∂X
+ λk∆XT

j = 0

=⇒
∑
i

∂x̂(P k
i , X

k
j )

∂X

T
∂x̂(P k

i , X
k
j )

∂P
∆Pi +

(
λkI3×3 +

∑
i

∂x̂(P k
i , X

k
j )

∂X

T
∂x̂(P k

i , X
k
j )

∂X

)
∆Xj

=
∑
i

∂x̂(P k
i , X

k
j )

∂X

T (
xij − x̂(P k

i , X
k
j )
)
.

3



The above equations (for i = 1, . . . , n and j = 1, . . . ,m) can be combined into one single
equation as follows:

U1 W11 · · · W1m

U2 W21 · · · W2m

. . .
...

...
Un Wn1 · · · Wnm

W T
11 W T

21 · · · W T
n1 V1

...
...

...
. . .

W T
1m W T

2m · · · W T
nm Vm





∆P1
...

∆Pn

∆X1
...

∆Xm


=



q1
...
qn
r1
...
rm


(3)

where

Ui = λkI12×12 +
∑
j

∂x̂(P k
i , X

k
j )

∂P

T
∂x̂(P k

i , X
k
j )

∂P
,

Vj = λkI3×3 +
∑
i

∂x̂(P k
i , X

k
j )

∂X

T
∂x̂(P k

i , X
k
j )

∂X
,

Wij =
∂x̂(P k

i , X
k
j )

∂P

T
∂x̂(P k

i , X
k
j )

∂X
,

qi =
∑
j

∂x̂(P k
i , X

k
j )

∂P

T (
xij − x̂(P k

i , X
k
j )
)
,

rj =
∑
i

∂x̂(P k
i , X

k
j )

∂X

T (
xij − x̂(P k

i , X
k
j )
)

for i = 1, . . . , n, j = 1, . . . ,m. Equation (3) can also be written more concisely as[
U W
W T V

] [
∆P
∆X

]
=

[
q
r

]
(4)

where

U =

U1

. . .

Un

 , V =

V1 . . .

Vm

 ,W =

W11 · · · W1m
...

. . .
...

Wn1 · · · Wnm

 , q =

q1...
qn

 , r =

 r1...
rm

 .
To solve (4), we first isolate ∆X:

W T∆P + V∆X = r

=⇒ ∆X = V −1(r −W T∆P ). (5)

4



Now plugging this expression into the equation U∆P +W∆X = q, we obtain

U∆P +WV −1(r −W T∆P ) = q

=⇒ (U −WV −1W T )︸ ︷︷ ︸
12m×12m

∆P = q −WV −1r.

We can solve this linear system to find ∆P , then plug the result into (5) to find ∆X.
Notice this key point: multiplying by V −1 is inexpensive because V is block diagonal

(with 3× 3 blocks). When n is large, this approach to solving (3) is far more efficient than
solving (3) naively, without exploiting sparsity.

5


