The sparse Levenberg-Marquardt algorithm for bundle
adjustment

Daniel O’Connor

These notes describe the sparse Levenberg-Marquardt algorithm for bundle adjustment.
I learned this algorithm from the book Multiple View Geometry in Computer Vision by
Hartley and Zisserman.

1 Notation

T
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For notational convenience, a 3 x 4 camera matrix |pl | will be represented by the vector
P
P1
P = |py| € R™. This vector P € R will be called a “camera vector”. (Here p;,p, and p3
P3

are vectors in R%.)
It will be helpful to define the function & which takes as input a camera vector
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and a point X = [y| € R? and returns as output the projection of X using the camera
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vector P. In detail,
P11x+p12y+p13z+pi4
The input to & is the concatenation of P and X, which is a vector in R'®. To save paper,

P31Z+p32Y+p332+p34

€ R
DP21Z+p22y+p23z+p24
P31Z+P32Y+p33z+p3a

we will usually write Z(P, X) rather than the more cumbersome expression & ([)1;] >

Throughout these notes, we will often use block notation when writing vectors and ma-
trices.



2 Optimization problem

Our goal in bundle adjustment is to find camera vectors P, € R (for i = 1,...,n) and
points X; € R? (for j =1,...,m) such that

i’(Pz,X]) ~ Tij for all Z,]

The points z;; € R? are given, and the vectors P; and X are unknown (but we have initial
guesses for them). To be precise, our goal is to solve the optimization problem

1
minimize Z §||i(Pi,Xj) - xu”% (1)
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The optimization variables are P;,..., P, € R*? and X;,..., X,, € R%.

3 Levenberg-Marquardt algorithm

Problem (1) is a nonlinear least squares problem. However, we could linearize the nonlinear
function  using the first-order approximation

H(P+ AP X + AX) ~ o(P,X) + 2K \p FHPX) 2)
ap oxX
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to obtain a linear least squares problem. The Gauss-Newton method solves a new instance
of this linear least squares problem at each iteration (always linearizing about the most
recent estimates of the vectors P, and Xj). The Levenberg-Marquardt algorithm adds /-
regularization to the linear least squares problems that are solved at each iteration. In other
words, the Levenberg-Marquardt iteration is

P =P+ APF, XM =XP+AXF fori=1,...,nj=1...m

where the vectors AP} and AXF are obtained by solving the optimization problem

1 Oz (PF, X* o0z (PF, X*
minimize L = Z §||£(PZ’€,XJI°) + %AB + %AXJ' — i3
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The optimization variables (in other words, the inputs to the function L) are the vectors
AP, € R"? and AX; € R® (fori = 1,...,n and j = 1,...,m). The regularization terms



encourage the vectors AP, and AX; to be small, which means that the approximation (2)
1s accurate.
The scalar A is chosen adaptively, as follows. If
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(so the objective function value is reduced), then the vectors P*™ X f“ are accepted and

AL = Xk/10. Otherwise, the vectors P, X! are rejected. In this case, we increase

the value of A\* by a factor of 10, and recompute the vectors PZ-kH, X f“. This process is

continued until the vectors P/ X f“ are accepted (in other words, until a reduction in the
objective function value is achieved).

4 Solving the Levenberg-Marquardt least squares prob-
lems

To solve a linear least squares problem, we need only set the gradient of the objective function
L equal to 0 and solve the resulting linear system of equations. Setting the derivative of L
with respect to AP; equal to 0, then taking the transpose of both sides, we obtain
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Here I19x12 is the 12 x 12 identity matrix. Setting the derivative of L with respect to AX;
equal to 0, then taking the transpose of both sides, we obtain

(zij — 2(PF, X)) .

03(PF, X%) 02(PF, XF) " 9a(PY, Xk

2, k k I S R I . DR A A . v k T

Z( (P X5) + 2P AP, + 5% AX; — xy 7% +NAXT =0
Pk X’“) Ox(P}, XF) 0z (PF, X5 02(PF, XF)

N Z o5 AP+ (A ng3+2 % % 2 AX;

8x<Pf,X’»f>T i
=2 ax - (- aPLXD).

i



The above equations (for ¢ = 1,...,n and j = 1,...,m) can be combined into one single
equation as follows:
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fori=1,...,n,7=1,...,m. Equation (3) can also be written more concisely as
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To solve (4), we first isolate AX:

WTAP+VAX =71
— AX =V 1(r - WTAP). (5)



Now plugging this expression into the equation UAP + WAX = g, we obtain

UAP+ WV r - WTAP) =g¢
— (U-WVWHAP=q—-WV1r,
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We can solve this linear system to find AP, then plug the result into (5) to find AX.

Notice this key point: multiplying by V! is inexpensive because V is block diagonal
(with 3 x 3 blocks). When n is large, this approach to solving (3) is far more efficient than
solving (3) naively, without exploiting sparsity.



