The sparse Levenberg-Marquardt algorithm for bundle
adjustment

Daniel O’Connor

These notes describe the sparse Levenberg-Marquardt algorithm for bundle adjustment.
I learned this algorithm from the book Multiple View Geometry in Computer Vision by
Hartley and Zisserman.

1 Notation

T
P
For notational convenience, a 3 x 4 camera matrix |pl | will be represented by the vector
P
P1
P = |py| € R™. This vector P € R will be called a “camera vector”. (Here p;,p, and p3
P3

are vectors in R%.)
It will be helpful to define the function & which takes as input a camera vector

Y4
P=|ps ERm

b3

x
and a point X = [y| € R? and returns as output the projection of X using the camera

([3])-

vector P. In detail,
P11x+p12y+p13z+pi4
The input to & is the concatenation of P and X, which is a vector in R'®. To save paper,

P31Z+p32Y+p332+p34

€ R
DP21Z+p22y+p23z+p24
P31Z+P32Y+p33z+p3a

we will usually write Z(P, X) rather than the more cumbersome expression & ([)1;] >

Throughout these notes, we will often use block notation when writing vectors and ma-
trices.

2 Optimization problem

Our goal in bundle adjustment is to find camera vectors P, € R (for i = 1,...,n) and
points X; € R? (for j =1,...,m) such that

i’(Pz,X]) ~ Tij for all Z,]

The points z;; € R? are given, and the vectors P; and X are unknown (but we have initial
guesses for them). To be precise, our goal is to solve the optimization problem

1
minimize Z §||i(Pi,Xj) - xu”% (1)

1,J

The optimization variables are P;,..., P, € R*? and X;,..., X,, € R%.

3 Levenberg-Marquardt algorithm

Problem (1) is a nonlinear least squares problem. However, we could linearize the nonlinear
function using the first-order approximation

H(P+ AP X + AX) ~ o(P,X) + 2K \p FHPX) 2)
ap oxX
4 12x1 1 3x1
2%x12 2x3

to obtain a linear least squares problem. The Gauss-Newton method solves a new instance
of this linear least squares problem at each iteration (always linearizing about the most
recent estimates of the vectors P, and Xj). The Levenberg-Marquardt algorithm adds /-
regularization to the linear least squares problems that are solved at each iteration. In other
words, the Levenberg-Marquardt iteration is

P =P+ APF, XM =XP+AXF fori=1,...,nj=1...m

where the vectors AP} and AXF are obtained by solving the optimization problem

1 Oz (PF, X* o0z (PF, X*
minimize L = Z §||£(PZ’€,XJI°) + %AB + %AXJ' — i3

1,J

A\F AF
+ 5 STIARIE+ 5 Y IAX IR
i J

The optimization variables (in other words, the inputs to the function L) are the vectors
AP, € R"? and AX; € R® (fori = 1,...,n and j = 1,...,m). The regularization terms

encourage the vectors AP, and AX; to be small, which means that the approximation (2)
1s accurate.
The scalar A is chosen adaptively, as follows. If

1. L.
S0 SIPEL X — a3 < ST S (PE XE) —

1,J Y]

(so the objective function value is reduced), then the vectors P*™ X f“ are accepted and

AL = Xk/10. Otherwise, the vectors P, X! are rejected. In this case, we increase

the value of A* by a factor of 10, and recompute the vectors PZ-kH, X f“. This process is

continued until the vectors P/ X f“ are accepted (in other words, until a reduction in the
objective function value is achieved).

4 Solving the Levenberg-Marquardt least squares prob-
lems

To solve a linear least squares problem, we need only set the gradient of the objective function
L equal to 0 and solve the resulting linear system of equations. Setting the derivative of L
with respect to AP; equal to 0, then taking the transpose of both sides, we obtain

Oz (Pk, X*) Oz (P, XF) " oa(Pr, Xk

~(Pk xk R AT S B . N I R k T _

;(:(;(Pi,xjwr op AP+ o AX — o5 tAAPR,
0i(PF, X*) " 01(PF, X¥)

Pt —p ox AN

P’f Xk) O (P?“,X’?)) A

- <>\ L2x12 +Z ap
P”C Xk)
= Z

Here I19x12 is the 12 x 12 identity matrix. Setting the derivative of L with respect to AX;
equal to 0, then taking the transpose of both sides, we obtain

(zij — 2(PF, X)) .

03(PF, X%) 02(PF, XF) " 9a(PY, Xk

2, k k I S R I . DR A A . v k T

Z((P X5) + 2P AP, + 5% AX; — xy 7% +NAXT =0
Pk X’“) Ox(P}, XF) 0z (PF, X5 02(PF, XF)

N Z o5 AP+ (A ng3+2 % % 2 AX;

8x<Pf,X’»f>T i
=2 ax - (- aPLXD).

i

The above equations (for ¢ = 1,...,n and j = 1,...,m) can be combined into one single
equation as follows:

[Uy Wi - Win] A - -
v, Wo o Wa| [T [0
Wi Wi o Wi W - .
W, Wh, e W Vp | LKL L,
where
uly X’f) 0#(P, X1)
U—)\Il2><12+z op =,
Pk X’“) 0z (PF, XF)
1) J
= N3s + Z X)
L earhxy” a@@k,x;-f)
“ oP 0X ’
0&(PF, XH)" A
%:Za—P] (23 — 2(PF, X7))
j
0i(PF, XF)" i
n= gy o (e —a(PLXD)
fori=1,...,n,7=1,...,m. Equation (3) can also be written more concisely as
U W |AP| |q)
wT VI||AX]| |r
where
U, Vi Wi Wim q1 r1
U - V= w=| a=|i]r=
Un Vm Wnl an dn T'm

To solve (4), we first isolate AX:

WTAP+VAX =71
— AX =V 1(r - WTAP). (5)

Now plugging this expression into the equation UAP + WAX = g, we obtain

UAP+ WV r - WTAP) =g¢
— (U-WVWHAP=q—-WV1r,

(.

~
12mx12m

We can solve this linear system to find AP, then plug the result into (5) to find AX.

Notice this key point: multiplying by V! is inexpensive because V is block diagonal
(with 3 x 3 blocks). When n is large, this approach to solving (3) is far more efficient than
solving (3) naively, without exploiting sparsity.

